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Competing designs for drug combination 
in phase I dose-finding clinical trials 
M.-K. Riviere,a,b*† F. Duboisb and S. Zohara 

The aim of phase I combination dose-finding studies in oncology is to estimate one or several maximum toler­
ated doses (MTDs) from a set of available dose levels of two or more agents. Combining several agents can indeed 
increase the overall anti-tumor action but at the same time also increase the toxicity. It is, however, unreasonable 
to assume the same dose–toxicity relationship for the combination as for the simple addition of each single agent 
because of a potential antagonist or synergistic effect. Therefore, using single-agent dose-finding methods for 
combination therapies is not appropriate. 

In recent years, several authors have proposed novel dose-finding designs for combination studies, which 
use either algorithm-based or model-based methods. The aim of our work was to compare, via a simulation 
study, six dose-finding methods for combinations proposed in recent years. We chose eight scenarios that dif­
fer in terms of the number and location of the true MTD(s) in the combination space. We then compared the 
performance of each design in terms of correct combination selection, patient allocation, and mean number of 
observed toxicities during the trials. Our results showed that the model-based methods performed better than 
the algorithm-based ones. However, none of the compared model-based designs gave consistently better results 
than the others. Copyright © 2014 John Wiley & Sons, Ltd. 
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1. Introduction 

The majority of phase I cytotoxic dose-finding studies seek to establish a dose high enough to be able 
to observe potential efficacy while maintaining the toxicity rate within certain pre-defined acceptable 
limits. In oncology, phase I studies focus on determining the maximum tolerated dose (MTD) that will 
be used in further phase II clinical trials of which the central interest is on potential efficacy. Following 
Storer [1], the statistical formulation of the problem is to select a dose level from several available doses, 
with a toxicity probability closest to a given target [2–4]. Most statistical model-based or algorithm-
based methods were developed for cytotoxic single-agent phase I dose-finding clinical trials [5]. In this 
context, it is assumed that the toxicity of a single agent is monotonic and increases with the dose, as does 
the efficacy. 

In the field of oncology, it is currently rare to find new molecules that perform better than existing 
therapeutic strategies. When combining two or more agents, there may be a potential synergistic effect 
in terms of efficacy. That is why investigators wish to increase overall anti-tumor action and survival by 
combining several agents, either cytotoxics or targeted molecules, or both. As a result, it is difficult to 
suppose that each molecule will act independently in terms of toxicity. In dose-finding studies, physi­
cians aim to gradually increase toxicity during the dose-escalation procedure. However, when combining 
several agents, the ordering of toxicity probabilities is not fully known. For instance, the combination of 
two cytotoxics can induce an ordered subset of toxicity (Figure 1(a)). Even when a partial ordering is 
known, it is still difficult to decide how to escalate or de-escalate a combination of doses. Indeed, on a 
diagonal, there is no knowledge about which combination is more toxic; it is not known prior to the trial 

aINSERM, U1138, Equipe 22, Centre de Recherche des Cordeliers, Université Paris 5, Université Paris 6, Paris, France 
bIRIS (Institut de Recherches Internationales Servier), Suresnes, France 
*Correspondence to: M-K. Riviere, INSERM, U1138, Equipe 22, Centre de Recherche des Cordeliers, Université Paris 5, 
Université Paris 6, Paris, France. 

†E-mail: marie-karelle.riviere@crc.jussieu.fr 

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1–12 

1 



M.-K. RIVIERE, F. DUBOIS AND S. ZOHAR 

(a) 

(c) (d) 

(b) 

Figure 1. (a) Partial order relationships between combinations. (b) Three possible orderings consistent with the 
partial order retained for POCRM among all possible orderings for the simulation study. 

which of D1;2 and D2;1 is more toxic. Therefore, it is senseless to use single-agent dose-finding methods 
in combination studies. 

Several authors have recently addressed this issue by proposing new methods for combination studies, 
which are either algorithm-based or model-based. Ivanova and Wang have proposed an ‘up-and-down 
algorithm-type’ method with isotonic regression for the estimation of a set of possible MTDs [6]. Fur­
thermore, Wang and Ivanova have developed a three-parameter model-based method for which the 
parameters are estimated using Bayesian inference [7]. Mandrekar et al. have proposed incorporating 
both the toxicity and efficacy of each agent into the identification of an optimal dosing region for the 
combination using a continuation ratio model to separate each agent’s toxicity and efficacy curves [8,9]. 
Fan et al. have proposed a ‘2 C 1 C 3’ algorithm-based dose-allocation scheme as well as the perfor­
mance of two-dimensional isotonic regression to estimate the MTD [10]. Yin and Yuan have developed 
a Bayesian adaptive design based on latent 2 � 2 tables in which the combinations’ toxicity probabili­
ties in the two-dimensional space are estimated using a Gumbel-type model [11]. Additionally, Yin and 
Yuan have extended their method by changing to a copula-type model to simulate the effect of two or 
more drugs in combination [12]. Bailey et al. have introduced a second agent as a covariate in a logis­
tic model [13]. Recently, Wages et al. have considered a continual reassessment method (CRM) based 
approach considering different orderings with partial order between combinations. In this case, the MTD 
is estimated for the order associated with the highest model-selection criterion [14]. 

For this simulation study, we focused on designs dealing only with toxicity. We selected six designs, 
which were either algorithm-based or model-based, and whose statistical estimation methods and allo­
cation rules differed. The aim of this work was to provide statisticians involved in dose-finding studies 
with tools to evaluate combinations in order to select the most suitable design according to clinical trial’s 
combination and indication. We selected the methods of Ivanova and Wang [6], Ivanova and Kim [18], 
Wang and Ivanova [7], Yin and Yuan [11, 12], and Wages et al. [14], which we consider representa­
tive of the methods that can be found in the literature. We had initially considered the selection of only 
one MTD at the end of the trial but then extended the comparison to the selection of multiple MTDs 
(Section 3). 

2. Methods 

2.1. Notations 

Let there be a two-agent combination used in a phase I dose-finding clinical trial for which the dose– 
toxicity relationship is monotonic with respect to both dose levels. Let Dj;k denote the dose level of a 
combination in which j refers to agent 1 .j D 1; : : : ; J /;  and k to agent 2 .k D 1; : : : ; K/. 

Toxicity refers to a dose-limiting toxicity (DLT), that is, an adverse event of grade 3 or higher. We 
represent the observation of a toxicity for patient i .i  D 1; : : : ; N /  by a Bernoulli random variable yi , 
equal to 1 if a DLT is observed for patient i and 0 otherwise. Let us assume that the combination dose 
Dj;k is administered to nj;k patients and that we observe a total of tj;k DLTs at that combination dose 
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level. We then denote the observed proportion of DLTs by ' 
tj;k and define �j;k as the toxicity j;k D 
nj;k 

probabilities. 
The target (probability of) toxicity, � , is fixed prior to trial onset as well as the initial guesses of toxi­

city (also called working model or skeleton). The combination Xi received by patient i .i  D 1; : : : ; N /  ˚ }
can be seen as a random variable taking values xi 2 Dj;kI j D 1; : : : ; J I k D 1; : : : ; K . For simplic­
ity purposes, the selected combination will be referred to as an MTD in order to maintain the same 
designation as in single-agent trials. 

2.2. Up-and-down design for combinations [6] 

Ivanova and Wang proposed an up-and-down design for two-agent combinations associated with an iso­
tonic regression for the estimation of the MTD [6]. The aim of this method was to identify a set of MTDs 
for each dose of agent 2. Within this context, we proposed some modifications in order to ensure com­
parability with other methods. This two-dimensional approach was based on a non-parametric design, 
which is an extension of the Narayana group’s design [15, 16]. If the last allocation was at combination 
Dj;k , the dose-allocation rule for the next combination is defined as follows: (i) Dj C1;k if ' j;k < �  and 
there was no toxicity observed in the last cohort; (ii) Dj -1;k if ' j;k > �  and there was at least one toxic­
ity in the last cohort; (iii) Dj C1;k-1 if ' j;k < �  and there was at least one toxicity in the last cohort; and 
(iv) Dj -1;kC1 if ' j;k > �  and there was no toxicity in the last cohort. 

The number of patients assigned to the lowest level of agent 2 is restricted to N to enable the method 
K 

to explore other levels of agent 2. Ivanova and Wang [6] proposed a ‘start-up phase’ in order to gather 
enough information before estimating ' j;k’s. The start-up phase is conducted according to the following 
algorithm: (i) if, in the last cohort, no toxicity was observed, agent 1 is increased by one dose level; 
and (ii) if, in the last cohort, at least one toxicity was observed, agent 1 is decreased by two dose levels 
and agent 2 increased by one dose level. This process is repeated until all levels of agent 2 have been 
explored, and alternative combinations are proposed when reaching the boundary of the combination 
space. 

When the overall sample size is reached, the estimate of the set of maximum tolerated combinations 
is calculated after using bivariate isotonic regression [17]. 

In order to ensure comparability between all of the methods presented in this manuscript, a decision 
rule with the selection of one MTD was proposed. The recommended combination at the end of the 
trial was the one with the toxicity probability closest to the target after isotonic regression; and, if there 
were several, then the one with the highest level of agent 2 was recommended. Moreover, the start-up 
phase was modified to avoid safety concerns. Indeed, we supposed that when combining two cytotoxic 
agents (and due to the potential synergistic effect in terms of toxicity between them), it is unreasonable 
to explore all levels of agent 2 during the start-up phase. Therefore, when toxicity was observed and the 
original rule was not possible, the start-up phase was stopped. 

2.3. Up-and-down design using the T -statistic [18] 

Using a newer approach proposed by Ivanova and Kim, a modification of the previous algorithm-based 
method can be implemented by replacing the Narayana design-based allocation rule with the T -statistic 
[18]. With the other parts of the method remaining the same, we defined the T -statistic at combination 
Dj;k by the following: 

2
' j;k - � tj;k - 2tj;k ' j;k C nj;k 'j;k 2Tj;k D ; where sj;k Dsj;k p

nj;k 
nj;k - 1 

Then, according to the recommendation on parameter values in [18], the dose-allocation rule would 
be as follows: (i) Dj C1;k if Tj;k 6 -1, (ii) Dj -1;k if Tj;k > 1, (iii) Dj C1;k-1 if - 1 < Tj;k 6 0, and (iv) 
Dj -1;kC1 if 0 < Tj;k < 1. 

2.4. Two-dimensional dose finding in discrete dose space [7] 

Furthermore, Wang and Ivanova proposed a new two-dimensional model-based design of which the aim 
was to identify a set of MTDs for each dose of agent 2 [7]. As presented in the previous section, some 
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minor changes were proposed for this method in order to ensure comparability and respect clinical prac­
tice. The dose-combination model was defined as follows with an interaction term proposed by Wang 
and Ivanova: 

( ) ( )˛ 
�j;k D 1 - 1 - pj .1 - qk/ˇ exp -
 log.1 - pj / log.1 - gk/

where ˛ > 0; ˇ > 0; 
 > 0; and pj .j D 1;  : : : ; J /; qk .k D 1;  : : : ; K/  are the working models for 
agents 1 and 2, respectively. The interaction term 
 was introduced in the model to consider the possible 
synergistic effects. 

After each cohort of patients, the estimation of �Oj;k was updated using Monte Carlo method 
with exponential prior distributions centered in 1 for all parameters. At each step, the com­
bination chosen to be allocated to the next cohort is the closest to the target belonging to ( )
Dj C1;k; Dj;kC1; Dj -1;kC1; Dj -1;k; Dj;k-1; Dj C1;k-1; Dj;k . 

For comparison purposes, the method was restricted to select only one MTD such that Dj;k was the 
combination with a toxicity probability closest to the target: .j; k/ D argminj;kjP.Y D 1jDj;k/-� j and 
among the Dj;k’s that have already been administered to patients, as proposed by Yin and Yuan [11,12], 
without decreasing the performance of the method. Again, for the same reasons as previously outlined, 
the start-up phase was modified as detailed in Section 2.2. 

2.5. Continual reassessment method for partial ordering [14] 

Wages et al. proposed a dose-finding approach based on the CRM that considers orderings between 
combinations [14]. The ordering between agents is assumed to be monotonic and increases with the 
dose. 

Assuming there are M possible ways to order combinations that are consistent with the non­
decreasing assumption, let w` .` D 1;  : : : ; J  � K/ be the working model (that is the initial guesses of 
toxicity in ascending order), and ˛i;` the initial guess w corresponding to the position of the combination 
received by patient i .i  D 1;  : : : ; N /  in the ordering `. 

For each ordering m D 1;  : : : ; M , the dose–toxicity model is defined as a function of the dose and a 
parameter a 2 A W 8m; P .Yi D 1jXi D xi / D �m.xi ; a/, where the ‘empiric’ model �m.xi ; a/  D ˛a 

i;m 

was chosen by the authors. Following O’Quigley et al. [2], a prior probability distribution g.a/ for a 

was assigned. Let fp.1/; : : : ; p.M /g denote the prior probability of each ordering representing their P 
plausibility, where p.m/ D 1 and 8m; p.m/ > 0. m 

After the inclusion of I th patient, for each ordering m, the posterior mean aOm and the posterior 
probabilities of m are estimated by 

Z Z 
a:Lm.ajdata/g.a/da p.m/ Lm.ajdata/g.a/da 

A A aOm D Z and Q data/ Dp.mj
M � Z � XLm.ajdata/g.a/da 

p.m/ Lm.ajdata/g.a/da A 
A mD1 

where Lm.ajdata/ is a binomial likelihood. 
The order h .h  D 1;  : : : ; M /  with the greatest posterior probability, Q data/, is chosen for the p.mj

next cohort. Nevertheless, when a uniform prior distribution is chosen for the ordering probabilities, 
as the trial proceeds, the difference between the posterior probabilities of m takes some time to dif­
ferentiate. Therefore a start-up phase could be set up, where, for the first few patients, the ordering 
is sampled randomly with the weights of posterior probabilities. Once the order h has been cho­
sen, the combination assigned to the next patient (or cohort) is the one closest to the target toxicity: ˇ ˇ ˇ aOh ˇargmin`j�h .w`; aOh/ - � j D argmin` ˇ w - � ˇ with ` D j � k. The original method recommended 

` 

trial initiation at the combination assumed to be the MTD. Nevertheless, in our simulations, the first 
administered combination was the lowest for comparison purpose. 

2.6. Dose-finding design based on copula regression [12] 

Yin and Yuan proposed a Bayesian method using copula regression for combinations [12]. The authors 
have made the assumption that each single agent had already been evaluated in separate phase I trials. 
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As a consequence, physicians have a reasonable prior knowledge of the MTD of each drug alone. Let 
p1; : : : pJ and q1; : : : qK be the prior toxicity probabilities of each dose level of agents 1 and 2 alone, ( )
respectively, and �j;k the probability of toxicity in combination Dj;k . 

A Clayton-copula regression type that enables expressing the joint toxicity probability of combination � � 
ˇ˛Dj;k with marginal true probabilities of toxicity pj ; q
k 

was used: 

� � �-
 � -( )-
 ˇ 

1 

˛�j;k D 1 - 1 - pj C 1 - q
k 

- 1 

where 
; ˛; ˇ > 0 are unknown parameters. The parameter 
 characterizes the drug interaction effect, 
and ˛ and ˇ characterize the uncertainty on the initial guesses. 

Let ce and cd , with ce C cd > 1, denote fixed probability cutoffs for dose escalation and de­
escalation respectively that need to be calibrated through simulations studies. Prior distributions of model 
parameters are assumed to be independent with a prior distribution centered on 1 for ˛ and ˇ and a non-
informative prior distribution for 
 . Adaptive rejection Metropolis sampling within Gibbs sampling [19] 
was used to sample  .˛; ˇ; 
/ from the posterior joint distribution in order to calculate posterior estimates 
of �j;k and P.�j;k < �/. In practice, the dose-allocation method is as follows: (i) if, at the current dose ( )
combination, Dj;k; P  �j;k < � > ce , then the combination is escalated to an adjacent combination 
.Dj C1;k; Dj;kC1; Dj C1;k-1; Dj -1;kC1/ with the probability of toxicity higher than the current value ( )
and closest to � ; (ii) if, at the current dose combination, Dj;k; P  �j;k > � > cd , then the combination 
is de-escalated to an adjacent combination .Dj -1;k; Dj;k-1; Dj C1;k-1; Dj -1;kC1/ with the probability 
of toxicity lower than the current value and closest to � ; and (iii) otherwise, the next cohort of patients 
continues to be treated at the current combination. Once the maximum sample size is reached, the com­
bination associated with probability of toxicity that is closest to � is selected as the MTD combination 
(from the dose tested on at least one cohort). 

A start-up phase was proposed in order to gather enough information for estimating the �j;k where 
each agent’s dose level is increased until at least one toxicity is observed while the other agent remains 
at its lowest level. 

2.7. Dose-finding design based on latent contingency table [11] 

The method proposed by Yin and Yuan in [11] is the same as that in [12] with another model for toxicity 
probability. A Gumbel model was chosen to model the probability of toxicity at combination Dj;k , given  
by � � � � 
 ( ) e - 1˛ ˇ ˛ ˇ

�j;k D 1 - 1 - p 1 - q 1 C pj qj k k e
 C 1 

3. Simulations 

We simulated 2000 independent replications of phase I trials evaluating two-agent combination trials in 
which five dose levels for agent 1 and three dose levels for agent 2 were chosen. Eight scenarios were 
studied (Table I) with several number and locations of the MTDs in the combination space. The chosen 
scenarios seemed to cover a wide variety of underlying realities. The toxicity target was fixed at 0:3, and  
the overall sample size was 60. To ensure comparability, the cohort size was chosen equal to 3 for all 
methods, and no stopping rules were used. Because of practical concerns, each trial started at the lowest 
combination D1;1. 

For simplicity, the dose-finding methods are denoted in Section 3 as follows: (i) AISO for Ivanova 
and Wang [6], (ii) TSTAT for Ivanova and Kim [18], (iii) I2D for Wang and Ivanova [7], (iv) POCRM 
for Wages et al. [14], (v) BCOPULA for Yin and Yuan [12], and (vi) BGUMBEL for Yin and Yuan [11]. 

In order to be able to compare all dose-finding designs, modifications and assumptions were made 
(see Supporting information). All designs were optimized using the model average best-setting choices 
to improve the percentage of correct selections (PCS) when recommending one combination at the end 
of the trial. Indeed, we studied the influence of working models for each model-based design. Moreover, 
for each method with a start-up phase, we studied its influence. For example, for the POCRM, we studied 
the influence of the number of orderings retained for POCRM and the impact of those chosen on PCS. 
For I2D, we introduced the interaction term between the two agents suggested by Wang and Ivanova [7] 
and so on.  
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Table I. Toxicity scenarios for the two-agent combinations. 

Agent 1 

Agent  2  1  2  3  4  5  1  2  3  4  5  

3 
2 
1 

0.15 
0.10 
0.05 

0.30 
0.15 
0.10 

Scenario 1 
0.45 
0.30 
0.15 

0.50 
0.45 
0.30 

0.60 
0.55 
0.45 

0.45 
0.30 
0.15 

0.55 
0.45 
0.30 

Scenario 2 
0.60 
0.50 
0.45 

0.70 
0.60 
0.50 

0.80 
0.75 
0.60 

3 
2 
1 

0.10 
0.07 
0.02 

0.15 
0.10 
0.07 

Scenario 3 
0.30 
0.15 
0.10 

0.45 
0.30 
0.15 

0.55 
0.45 
0.30 

0.50 
0.45 
0.30 

0.60 
0.55 
0.45 

Scenario 4 
0.70 
0.65 
0.60 

0.80 
0.75 
0.70 

0.90 
0.85 
0.80 

3 
2 
1 

0.07 
0.03 
0.01 

0.09 
0.05 
0.02 

Scenario 5 
0.12 
0.10 
0.08 

0.15 
0.13 
0.10 

0.30 
0.15 
0.11 

0.15 
0.09 
0.05 

0.30 
0.12 
0.08 

Scenario 6 
0.45 
0.15 
0.10 

0.50 
0.30 
0.13 

0.60 
0.45 
0.15 

3 
2 
1 

0.30 
0.15 
0.07 

0.50 
0.30 
0.10 

Scenario 7 
0.60 
0.45 
0.12 

0.65 
0.52 
0.15 

0.75 
0.60 
0.30 

0.08 
0.05 
0.02 

0.15 
0.12 
0.10 

Scenario 8 
0.45 
0.30 
0.15 

0.60 
0.55 
0.50 

0.80 
0.70 
0.60 

3 
2 
1 

0.15 
0.02 
0.005 

0.30 
0.05 
0.01 

Scenario 9 
0.45 
0.08 
0.02 

0.55 
0.12 
0.04 

0.65 
0.15 
0.07 

0.70 
0.45 
0.05 

0.75 
0.50 
0.10 

Scenario 10 
0.80 
0.60 
0.15 

0.85 
0.65 
0.30 

0.90 
0.70 
0.45 

The MTD(s) combination are given in bold. 

At the end of this optimization phase, in the simulation study, the marginal initial guesses of toxici­
ties for agent 1, pj , were chosen as .0:12; 0:2; 0:3; 0:4; 0:5/, and for agent 2, qk , as  .0:2; 0:3; 0:4/ for 
I2D, BCOPULA, and BGUMBEL using the ‘getprior’ function of the ‘dfcrm’ R package according to 
Lee and Cheung [20]. For BCOPULA and BGUMBEL, the dose-allocation thresholds were equal to 
ce D 0:8; cd D 0:55 and ce D 0:7; cd D 0:55, respectively, as proposed by Yin and Yuan [11, 12]. 
For POCRM, following Wages et al. [14], the number of possible orderings was restricted to 3 after 
a sensitivity analysis, and the working model was set up using the ‘getprior’ function with the length 
of indifference interval ı D 0:03 and the initial guessed MTD ` D 13 near the last combinations: 
.0:0001; 0:0006; 0:002; 0:005; 0:01; 0:02; 0:04; 0:06; 0:1; 0:14; 0:19; 0:24; 0:3; 0:36; 0:42/. 
(Other working models were investigated; see Supporting information.) 

At each simulated trial, we computed (i) the PCS at the end of the trial; (ii) the percentage of patients 
allocated at the true MTD(s) during the trial; (iii) the mean number of observed DLTs throughout the 
trial; and (iv) the mean number of patients allocated to each combination throughout the trial. 

Designs were programmed using R version 2.13 [21] for AISO, TSTAT, I2D, and POCRM, and in 
C++ for BCOPULA and BGUMBEL. 

3.1. Dealing with multiple MTDs 

In this manuscript, we have proposed the recommendation of only one MTD at the end of the trial. In 
our case, we believe that the existence of one MTD for each row of agent 2 is not always true, but more 
than one MTD in the entire combination space is possible. Following this, we proposed some decision 
rules in order to identify at least one MTD at the end of the trial. We then evaluated its performance 
using the same scenarios as in the previous section. We first identified an MTD by level of agent 2; at the 
end of the trial, for k D 1;  : : : ; K, the  MTD,  Djk ;k is the combination closest to the target, as follows: 
jk D argminj jP.Y D 1jDj;k / - � j. Then we applied the following decision rules in order to identify 
MTDs that are too toxic or not toxic ‘enough’ by level of agent 2. 

3.1.1. Decision rule for algorithm-based methods. The following decision rule was applied at the end ˚ }
of the trial: (i) if the combination selected to be the MTD 2 D1;k; k  D 1;  : : : ; K and �MTD - � > �1,

1;k 
then no combination was recommended on a row at the end of the trial; or (ii) if the combination selected 
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˚ } 
- �MTDto be recommended 2 DJ;k; k D 1; : : : ; K and � 

J;k 
> �2, then, once more, no combination was 

recommended. 

3.1.2. Decision rule for model-based methods. The following decision rule was applied at the end of the � � ˚ } 
�MTDtrial: (i) if the combination selected to be recommended 2 D1;k ; k D 1; : : : ; K and P 

1;k 
> �  > 

�3, then no combination was recommended on a row at the end of the trial; or (ii) if the combination � � ˚ } 
�MTDselected to be recommended 2 DJ;k; k D 1; : : : ; K and P 

J;k 
< �  > �4, then, once more, no 

combination was recommended. This rule was not applied to the POCRM as this method transforms a 
multidimensional combination space into an addition of several possible uni-dimensional orders. 

In this simulation study, the thresholds were chosen as follows: �1 D �2 D 0:15; �3 D 0:90, and  
�4 D 0:95. 

4. Results 

4.1. Selection of one MTD at the end of the trial 

Table II shows that the algorithm-based methods did not perform as well as the model-based ones. When 
comparing the performance of model-based methods, no design seemed to really stand out (Table II). 

Scenarios 1 and 3 included three possible MTDs that were on one diagonal of the combination space; 
combinations D2;3, D3;2, and  D4;1 in scenario 1 and combinations D3;3; D4;2; and D5;1 in scenario 3. 
For these scenarios, all model-based designs gave a high PCS (over 66%), whereas POCRM seemed to 

Table II. Comparison of all dose-finding designs in terms of percentage of correct selection, percentage of 
patients allocated at the true MTD(s) during the trial, and mean number of observed DLTs throughout the trial 
when the aim is to select only one MTD. 

Scenario 

sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9 sc10 

Percentage of correct selections 
AISO 46.9 57.9 57.4 36.4 67.7 39.0 50.7 27.0 24.8 31.8 
TSTAT 55.0 52.5 62.3 36.8 67.1 45.3 46.5 30.9 20.8 27.0 
I2D 68.0 73.7 66.9 89.7 83.7 37.2 41.9 50.4 5.1 13.0 
POCRM 72.7 64.4 72.5 73.8 81.8 49.1 47.7 55.1 3.4 8.2 
BCOPULA 66.2 71.8 71.7 84.1 78.1 30.7 49.6 43.5 5.0 16.3 
BGUMBEL 67.1 72.5 68.4 87.5 77.9 33.6 48.0 49.5 6.0 8.6 
CRM anti-diag1 73.7 74.8 71.9 84.9 80.0 71.4 73.2 84.3 0.0 0.0 
CRM anti-diag2 73.7 74.8 71.9 84.9 80.9 75.1 75.4 83.9 0.0 0.0 

Percentage of patient allocated at a true MTD(s) during the trial 
AISO 32.9 59.1 28.7 21.3 18.4 23.0 29.8 16.4 9.9 8.4 
TSTAT 40.3 52.6 36.9 22.0 25.2 23.7 31.6 14.8 9.1 5.7 
I2D 44.1 55.6 38.9 79.8 34.6 23.0 32.0 24.0 3.9 12.1 
POCRM 46.8 39.6 51.6 57.4 66.1 28.8 34.1 28.5 3.1 8.8 
BCOPULA 40.0 50.1 40.3 84.1 27.8 16.6 38.3 23.6 3.0 14.0 
BGUMBEL 40.8 52.8 39.5 81.6 30.5 20.0 34.1 26.0 3.5 10.5 
CRM anti-diag1 49.2 55.3 45.2 74.5 45.5 43.5 52.6 58.4 0.0 0.0 
CRM anti-diag2 49.1 55.3 45.2 74.5 46.4 46.4 54.3 57.5 0.0 0.0 

Mean number of observed DLTs all over the trial 
AISO 13.8 19.5 12.0 26.4 8.4 12.7 15.3 14.0 12.2 22.3 
TSTAT 16.1 20.6 13.9 26.4 9.1 15.2 18.2 16.1 14.4 23.3 
I2D 15.3 17.6 14.1 19.9 10.1 14.3 16.1 15.3 14.4 17.0 
POCRM 20.1 22.8 18.2 23.3 14.4 17.7 19.9 20.5 17.4 22.5 
BCOPULA 14.2 16.1 12.7 19.5 9.2 12.8 14.6 14.3 12.4 15.5 
BGUMBEL 14.6 16.6 13.2 19.7 9.5 13.5 15.6 14.7 13.1 16.5 
CRM anti-diag1 16.5 18.4 15.3 20.3 11.5 14.8 17.6 17.1 0.0 0.0 
CRM anti-diag2 16.4 18.4 15.3 20.3 11.5 14.9 17.9 16.9 - ­
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perform better in terms of PCS. In scenario 2, in which two possible MTDs were located in the lower part 
of the combination space, the highest PCS values were observed for I2D, BCOPULA, and BGUMBEL 
(over 70%). When the correct combination was in the lower .D1;1/ or higher .D5;3/ extremity of the 
combination space, as with scenarios 4 and 5, I2D performed better. In scenarios 6 and 7, when the true 
MTDs were randomly located in the combination space, the performance in terms of combination selec­
tion was low, less than 40% for most designs in scenario 6 and less than 50% in scenario 7. When there 
was only one true MTD and it was located in the middle of the combination space, the PCS was less than 
55%, whichever the design. Finally, in scenarios 9 and 10, where the true MTD was unique and at the 
border of the combination space, the algorithm-based methods performed better than the model-based 
methods. For scenario 9, the PCS was above 20% for algorithm-based methods (AISO and TSTAT) but 
was always below 6% for model-based methods. This could be due to the way in which the combination 
space was explored: AISO and TSTAT provided better adjacent combination exploration owing to their 
dose-allocation method. Most PCS values remained, however, relatively low. 

Table II shows that POCRM generated more DLTs than the other methods. It also tended to overtreat 
more patients than the other methods, and at higher combinations. In fact, the gain in PCS for POCRM 

Figure 2. Convergence curves for scenarios 2–5. 
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when using a certain working model rather than others (see Supporting information) increased the 
mean number of DLTs. In the simulation study, we considered that this was acceptable, as the mean 
DLTs observed in all the scenarios was 19.7. This result is close to the expected number of DLTs 
(18), corresponding to a 0.3 toxicity combination in 60 patients. If investigators judged this possi­
bility unacceptable, they would need to adjust the design parameterization prior to trial onset, or to 
consider a dose-allocation design with overdose control. The BCOPULA method gave similar PCS than 
BGUMBEL and had good properties in terms of mean DLTs number. 

We then studied the convergence to the true MTDs while increasing the number of patients for all 
designs (Figure 2). We chose to show only four scenarios out of the eight presented in our simulation 
study. In scenario 2, all model-based designs were similar, but the algorithm-based design seemed to con­
verge slowly. This finding was observed in all cases, where the convergence of AISO and TSTAT was 
slower than that of model-based methods. In scenario 3, the difference in PCS between the algorithm-
based methods and the model-based methods tended to diminish with the increasing number of patients. 
In this scenario, POCRM, BGUMBEL, and I2D showed the best convergence, whereas in scenario 4, I2D 
and BGUMBEL approached nearly 95%. In scenario 5, BCOPULA and BGUMBEL had by far the best 
convergence and reached 90% very quickly. Nevertheless, in general, all methods (excepted BCOPULA 
and BGUMBEL in scenario 5) showed difficulties in attaining 100%, even with 300 patients. Overall, 
the convergence was rather slow. 

4.2. Comparison with one-dimensional CRM 

An important point is the contribution of multidimensional methods versus one-dimensional methods. 
As suggested during the review of this paper, we performed a one-dimensional CRM on a subset of 
combinations selected in an anti-diagonal of the dose-combination space where the toxicity probabili­
ties order was known between combinations. We chose the following two different anti-diagonal paths 
chosen, as follows: 

CRM anti-diag1: D1;1 -! D1;2 -! D2;2 -! D3;2 -! D4;2 -! D5;2 -! D5;3 

CRM anti-diag2: D1;1 -! D2;1 -! D2;2 -! D3;2 -! D4;2 -! D4;3 -! D5;3 

Using the ‘dfcrm’ package, we performed 2000 simulations on the scenarios corresponding to these 
anti-diagonals with restrictions to avoid skipping doses. The target toxicity, patient number, and cohort 
size were the same as for multidimensional methods. The working model was generated using the ‘get­
prior’ function with an indifference interval ı D 0:05, a initial guessed MTD at dose level 4 for a trial 
with seven doses. For scenarios 1–5, where at least one of the true MTD was included in anti-diagonals, 
PCSs were similar between multidimensional model-based methods and CRM. For scenarios 6–8, where 
the true MTDs were not located on the same diagonal, CRM on a reduced ordered subset of combina­
tions containing at least one MTD had clearly higher performances than multidimensional designs. But 
in practice, the true MTD(s) is (are) not necessarily contained in the chosen anti-diagonal of the ordered 

Table III. Comparison of AISO, TSTAT, I2D, BCOPULA, and BGUMBEL designs in terms of percentage 
of correct combination selection for each level of agent 2 when selecting multiple MTDs. 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

D4;1 D3;2 D2;3 D2;1 D1;2 D5;1 D4;2 D3;3 D1;1 

AISO 49.0 55.5 49.3 49.6 71.2 44.4 54.1 49.5 51.8 
TSTAT 46.1 54.9 61.5 46.4 64.8 44.6 56.8 64.4 57.5 
I2D 55.6 71.3 63.5 76.9 84.6 75.4 64.6 64.5 90.4 
BCOPULA 41.0 47.9 35.2 70.9 82.5 47.0 55.4 33.8 73.2 
BGUMBEL 46.1 61.3 38.5 76.5 83.2 40.9 67.0 41.2 74.5 

Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 10 

D5;3 D4;2 D2;3 D5;1 D2;2 D1;3 D3;2 D2;3 D4;1 

AISO 67.3 47.6 42.2 34.4 47.8 41.8 76.3 37.7 46.9 
TSTAT 69.5 49.9 48.4 33.2 40.8 62.5 75.4 40.3 39.8 
I2D 77.9 60.9 32.4 18.1 42.6 53.9 89.3 11.8 23.4 
BCOPULA 80.7 23.8 20.5 23.4 33.1 63.4 86.2 5.9 31.4 
BGUMBEL 83.2 35.6 25.0 7.8 41.4 64.0 91.5 8.2 19.6 
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combinations retained, which was the case of both scenarios 9 and 10. For these scenarios, the CRM 
(anti-diad1 and anti-diag2) could obviously never select a true MTD as it was not contained in the cho­
sen path. In this case, algorithm-based multidimensional methods performed better than model-based 
ones, even if PCS remained quite low. 

4.3. Selection of multiple MTDs at the end of the trial 

When selecting one MTD per level of agent 2 (Table III), PCSs of all methods were good on each row for 
scenarios 1–5 and 8 (higher than 40% in all cases and up to 91.5%). For scenario 6, the algorithm-based 
methods (AISO and TSTAT) and I2D performed well, whereas BCOPULA and BGUMBEL had rather 
low PCSs (between 20% and 35%). For scenario 7, D2;2 and D1;3 were well identified by all designs, 
but the PCSs for D5;1 were lower for model-based methods. 

5. Discussion 

The aim of this manuscript was to compare several dose-finding designs for cytotoxic combination stud­
ies. Based on this simulation study, model-based methods seemed to perform better than algorithm-based 
methods in terms of the percentage of correct combination selections (PCSs) when targeting a single 
MTD at the end of the trial. In general, the model-based methods gave a high PCSs in this case, and 
there was no major difference between the model-based methods compared. When one MTD per row 
was targeted, algorithm-based methods performed better than model-based methods but with low PCS. 

For comparison purposes, several choices were made, which merit discussion. According to the com­
bination dimensional space, we arbitrarily fixed the sample size at 60, as in Yin and Yuan [11, 12]. In 
this study, we chose five dose levels of agent 1 and three dose levels of agent 2, which resulted in 15 
possible combinations to evaluate. Nevertheless, when using a different dimensional space (J � K), fur­
ther investigations need to be carried out to find the optimal sample size for each method. In practice, it 
seems unreasonable to have such a large number of available combinations to evaluate, and only a subset 
of the dimensional space could be relevant. For this reason, we decided to compare the methods on a 
more realistic basis. Therefore, we chose 10 scenarios on a 5 � 2 dimensional space and performed 2000 
simulations of trials with 40 patients (data not shown). As in our manuscript, all model-based designs 
performed well. 

Some authors have made the assumption that using one MTD for each level of agent 2 is possible 
when exploring a large number of combinations [6, 7]. We thus proposed decision rules designed to 
detect when at least one MTD existed in the combination space. These decision rules were implemented 
at the end of the trial and were found to maintain the performance of the designs. In this case, how should 
the most appropriate combination for further investigation be chosen? Phase II trials can study several 
combinations, and if they require the selection of a unique combination, other criteria such as efficacy 
or pharmacokinetics should be taken into account in the decision process. Indeed, when two cytotoxic 
agents are combined, the resulting pharmacokinetic (PK) profiles of two MTDs are not necessarily sim­
ilar. In this case, the investigators could base their final decision on the maximization of exposure, or on 
the maximization of an efficacy surrogate. 

Some issues are raised by the design modifications proposed in this paper. Some methods are designed 
to select only one MTD. For instance, BCOPULA and BGUMBEL have a conservative allocation algo­
rithm that explores a restricted subset of the combination space and focuses on one combination when it 
is estimated to be the correct one. In these methods, patients are often allocated to one or few combina­
tions, and the other combinations are allocated to very few or to no patients. As a result, the estimation 
in a row of agent 2 can be poor. Moreover, for decision rules, we decided to keep the same tau values 
.�1 D �2 D 0:15; �3 D 0:90; and �4 D 0:95/ for all of the designs. But some designs could have 
performed better if we had calibrated these values specifically. 

The partial ordering method (POCRM) [14] is based on determining the most appropriate 
combination ordering in terms of toxicity, from a set of possible orderings. Nevertheless, the number 
of possible orderings increases with the combination space. In our simulation study, we restricted the 
choice to three reasonable orderings, as in Wages et al. [14] (see Supporting information). It should 
be noted that the method does not contain a ‘non-skipping’ rule and that in theory the combination allo­
cated to the next cohort can ‘skip’ more than one combination (that is, selecting a combination, which is 
not in the immediate adjacent space of the current combination). Especially, if investigators necessarily 
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wish to begin the trial at the lowest combination, as we did in our simulation study, and no toxicity is 
observed, then the next combination will gravitate towards the initial guessed MTD. This will cause a 
huge skipping depending on the ordering selected and on the working model. It is clear that in prac­
tice this should not be allowed. As most real clinical trials begin at the lowest dose, we think that this 
method should be modified to allow initiating the trial at the lowest combination while adding ‘non­
skipping’ rules or a start-up phase. For instance, as in ‘classical’ one-dimensional CRM, after selecting 
the ordering with the highest posterior probability, the method could restrict the dose allocation to com­
binations, which are next to the current one in the most probable ordering. Another possibility could 
be, if the current combination is Dj;k , to restrict the next combination when escalating to combinations 
Dj C1;k and Dj;kC1 or to implement one of the starting phase proposed by Yin and Yuan [12] or by Wang 
and Ivanova [7]. 

During the review of this manuscript, Wages and Conaway [22] have published a paper proposing 
some guidelines for the POCRM. In their paper, they have suggested to place the initial guessed MTD 
at the middle of the working model to ensure that there is enough spacing both below and above this 
dose. In our simulation study, according to our sensitivity analyses, we have placed the initial guessed 
MTD near the third quartile of the dose range. As published by O’Quigley and Zohar [23], there is 
no sharp answer about what is the definition of a reasonable against a non-reasonable working model, 
although it may well be the notion of robustness itself. In the Supporting information, we have tried to 
point out how a non-reasonable or mis-specified choice can dramatically lessen the performance of the 
method (this choice was not robust for all scenarios; see Supporting information) [24]. This is why in 
this manuscript our choice was driven by this finding; thus we have selected a reasonable working model 
as it has shown to give good performances on average for all scenarios. Another important modification 
that we have added to the POCRM is the recommendation to start at the lowest dose. We have based 
our decision on common practice in phase I for a single agent or a combination of agents. This mod­
ification has shown to have equal performance than if the POCRM started at the initial guessed MTD 
(data not shown). 

Another important issue relates to the performance of multidimensional methods versus one-
dimensional methods. As suggested during the review of this paper, we performed a basic CRM on 
a subset of combinations selected in an anti-diagonal of the dose-combination space. When the MTD 
was included in the anti-diagonal, the one-dimensional basic CRM worked as well or better than any 
multidimensional method. This finding points out that if the MTD exists in the selected anti-diagonal, a 
one-dimensional method is preferable to a more complex one. In practice, the entire combination space 
is not often studied in combination trials; it can increase the number of combinations to be evaluated, 
and ‘3C3’ dose-allocation rules, which are still used by investigators, are not valid for such trials. Using 
one-dimensional approaches involves a choice by the investigators in the determination of the combi­
nations to study, and this can be a difficult question. The most important issue will then be whether the 
chosen subset of combinations contains an MTD. If it does, a one-dimensional method would perform 
better than multidimensional ones. 

In our comparative simulation study, none of the model-based designs gave consistently better results 
than the others. Each method requires several choices prior to trial beginning, such as the choice of the 
working model, of the start-up phase, and of the prior distributions. According to our simulation results 
(see also Supporting information), it seemed that some choices can tumble the performance of a design. 
The issue of using a single MTD or multiple MTDs when evaluating a large combination space is chal­
lenging. Statisticians should propose combination methods that could identify the presence of one or 
more MTDs in the combination space, in their assumption, and in the dose-allocation process. These 
methods should also identify at which levels of agent 2 MTDs are located. Statisticians and investiga­
tors should be aware of the pros and cons of these designs in planning future trials. Our work was to 
enlighten multidimensional methods by comparing them using the same scenarios and the same (or very 
close) features. 
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