October 24 2017

Speaker:

Clement Ma, PhD, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School

Dr. Clement Ma is Lead Biostatistician at Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Instructor of Pediatrics at Harvard Medical School. He provides statistical leadership in collaborative clinical research with pediatric hematologists and oncologists. His current methodological research focuses on the design of early-phase clinical trials for children with cancer. During his graduate and post-graduate training at the University of Michigan, he developed statistical methods for analyzing low-frequency genetic variants in single and multi-center genetic association studies of complex diseases. He completed his bachelor's (biomedical engineering) and master's (biostatistics) degrees at the University of Toronto, and was a former biostatistician at Princess Margaret Cancer Centre.

Title:

Dual-agent dose escalation methods for pediatric oncology clinical trials

Abstract:

Phase 1 clinical trials aim to identify the optimal dose for the therapeutic agent that balances patient safety and potential efficacy. Cancer therapies that include two or more agents may increase efficacy as well as toxicity. Many adaptive dose-escalation designs have been proposed for trials of combination therapies. These designs can better assign dose combinations near the maximum tolerated dose combination (MTDC) to enrolled patients but require significant resources to design and monitor. Hence, relatively few adult oncology trials have used these designs, and to our knowledge, none have been used in pediatric trials. To motivate the use of adaptive designs in pediatric oncology, we performed a simulation study to compare the performance of dual-agent dose-escalation methods in a pediatric oncology framework.

We selected four Bayesian methods, and the commonly used 3+3 rule-based design (assuming a prespecified set of dose combinations) for our study. We designed 7 simulation scenarios with a restricted number of dose combinations and low total sample size (N=24) to reflect the realities of pediatric trials. We performed 2,000 simulated trials per scenario for each method and compared the methods across six metrics. Overall, all adaptive methods had a similar performance across all metrics. The average recommendation rates for the true dose combination ranged from 37% to 43%. The average proportion of patients receiving a dose greater than the MTDC ranged from 29% to 33%, which is near our target toxicity level of 30%. As expected, the conservative 3+3 design had lower recommendation rates than the adaptive designs. Adaptive designs represent a safe and effective way for dual-agent dose escalation trials in children.

Learning objectives:

Learn about different dose-escalation designs for clinical trials of combination therapies; and Understand the use of statistical simulation to evaluate the operating characteristics of clinical trial designs.

Dual-agent dose escalation methods in pediatric oncology clinical trials

Clement Ma, Ph.D.

Lead Biostatistician, Dana-Farber/Boston Children's Cancer and Blood Disorders Center Instructor of Pediatrics, Harvard Medical School

October 24, 2017

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Outline

- Background and motivation
- Dual-agent dose escalation simulation methods
- Simulation results
- Recommendations and conclusions

BACKGROUND AND MOTIVATION

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Phase 1 clinical trials: National Cancer Institute description

"Phase 1 trials determine a safe and/or biologically effective dose for phase 2 trials and help define adverse effects on normal organ function."

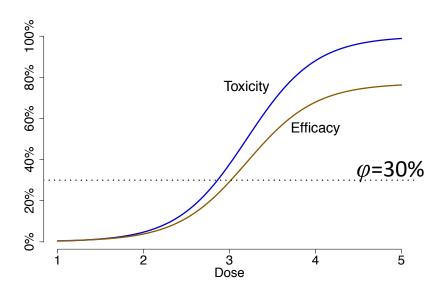
https://ctep.cancer.gov/investigatorresources/docs/investigatorhandbook.pdf

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Primary objective and definitions

To determine the maximum tolerated dose for the therapeutic agent.

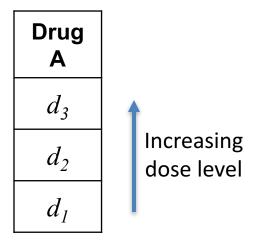
Term	Definition
Target toxicity (φ)	The maximum acceptable toxicity rate
Maximum Tolerated Dose (MTD)	The greatest dose with an acceptable toxicity rate
Dose limiting toxicity (DLT)	An unacceptable adverse event
Recommended Phase 2 Dose (RP2D)	The dose of the drug to be recommended for further testing in phase 2 trials



Dose-toxicity framework for one agent

Monotonicity assumptions:

- Toxicity level increases with dose
- Efficacy increases with dose
- Note: assumptions may not hold for targeted agents


Le Tourneau, Lee, & Siu. JNCI. 2009; 101(10):708-720

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Dose escalation for one agent

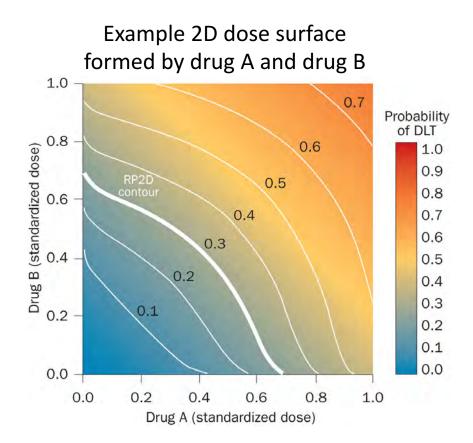
Pr(Toxicity in d_1) \leq Pr(Toxicity in d_2) \leq Pr(Toxicity in d_3)

Order doses by increasing toxicity

$$d_1 \rightarrow d_2 \rightarrow d_3$$

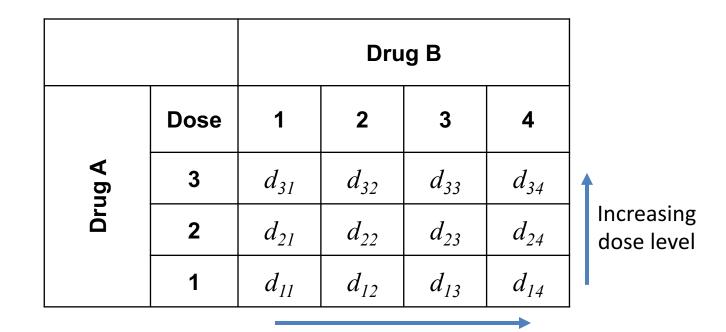
Combination therapies in oncology

- Single anti-cancer agent may encounter drug resistance
- Combination of 2+ agents can target cancer cells with different drug susceptibilities and may improve efficacy
- However, drugs may interact and have overlapping toxicity profiles
 - The RP2D for each individual drug may be too toxic when given in combination


Harrington JA, et al. (2013) Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2013.35

Dose-toxicity framework for two agents

- **Objective:** To determine the maximum tolerated dose combination (MTDC)
- Multiple MTDC's are possible for combination therapies
- The MTDC "search space" can be much larger for 2+ agents vs. 1 agent


Harrington JA, et al. (2013) Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2013.35

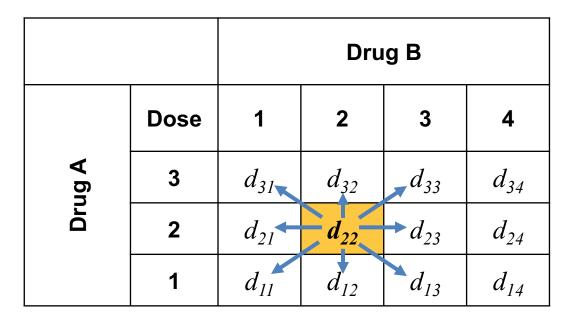
HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Dose escalation for two agents

Drug A: 3 dose levels Drug B: 4 dose levels 12 possible combinations

Dose escalation for two agents: challenges

		Drug B							
	Dose	1	2	3	4				
A gu	3	<i>d</i> ₃₁	<i>d</i> ₃₂	<i>d</i> ₃₃	<i>d</i> ₃₄				
Drug	2	<i>d</i> ₂₁	<i>d</i> ₂₂	<i>d</i> ₂₃	<i>d</i> ₂₄				
	1	d_{11}	<i>d</i> ₁₂	<i>d</i> ₁₃	d_{14}				


Order of dose combinations by toxicity probability is ambiguous:

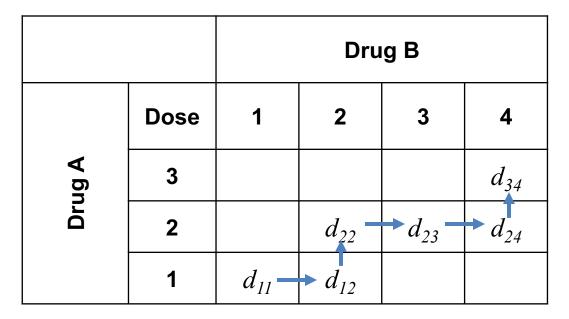
$$d_{12} \rightarrow d_{21} \operatorname{OR} d_{21} \rightarrow d_{12}$$
?

Dose escalation for two agents: challenges

Escalation (or de-escalation) to which dose combination?

Dual-agent dose escalation methods: naïve (but common) approach #1

		Drug B						
	Dose	1	2	3	4			
A gu	3							
Drug	2	d_{21}	► d ₂₂ -	$-d_{23}$	→ d ₂₄			
	1							


Select fixed dose for Drug A and escalate/de-escalate Drug B Apply dose-escalation methods for single agents

Disadvantage: only explore a subset of possible dose combinations

Dual-agent dose escalation methods: naïve (but common) approach #2

Select fixed dose-escalation path for drugs A and B Apply dose-escalation methods for single agents

Disadvantage: only explore a subset of possible dose combinations

Summary of dose escalation designs for combination therapies

Rule-based designs: use pre-defined rules to determine dose for next enrolled subject

Model-based (adaptive) designs:

use statistical model based on prior knowledge to determine dose for next enrolled subject

Study	Number of model parameters	Stages	Outcomes	Response values	Number of RP2D combinations
Rule-based designs					
Hamberg and Verweij (2009)57	-	1	Toxicity	Binary	1 or 2
Lee and Fan (2012)58	-	1	Toxicity	Binary	1 or 2
Huang et al. (2007) ⁷¹	-	2	Toxicity and efficacy	Binary	0 or 1
Lee et al. (2008)59	-	2	Toxicity	Binary	1
Model-based designs					
Wang and Ivanova (2005) ^{so}	3	2	Toxicity	Binary	Minimum number of doses of drug A or drug B
Yin and Yuan (2009)62	3	2	Toxicity	Binary	1
Yin and Yuan (2009)63	3	2	Toxicity	Binary	1
Kramar et al. (1999) ⁶¹	2	2	Toxicity	Binary	1
Su (2010)64	1	3	Toxicity	Binary	1
Thall et al. (2003)31	6	2	Toxicity	Binary	3
Mandrekar et al. (2007) ⁷³	6	1	Toxicity and efficacy	Binary (toxicity and efficacy)	1
Houede et al. (2010)77	21	1	Toxicity and efficacy	Ordinal (toxicity and efficacy)	1
Dragalin et al. (2008) ⁷⁹	8	2	Toxicity and efficacy	Binary, ordinal or continuous (toxicity and efficacy)	1
Whitehead et al. (2011) ⁷⁵	Between K and 3K*	1	Toxicity and efficacy	Binary (toxicity and efficacy)	Trial dependent (0-9)
Conaway et al. (2004) ⁶⁸	К	2	Toxicity	Binary	1
Wages et al. (2011) ⁷⁰	M‡	2	Toxicity	Binary	1
Wages et al. (2011) ⁶⁹	M‡	1	Toxicity	Binary	1
Braun and Wang (2010) ⁸⁰	6	1	Toxicity	Binary	1
Bailey et al. (2009)67	≥35	1	Toxicity	Binary	1

*Number of parameters depends on the choice of discrete values that 'risks' can take. ‡(M – 1) parameters for weights on simple orders, plus one parameter for the dose-escalation model. [§]Two parameters required for drug A, plus one or more parameters for number of indicator variables for drug B. Abbreviations: *K*, number of combinations; *M*, number of simple orders; RP2D, recommended phase II dose.

Harrington JA, et al. (2013) Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2013.35

Limited use of adaptive designs in phase I trials of combination therapies

Challenges:

- Lack of familiarity with adaptive designs
- May need larger N to evaluate many dose combinations (compared to naïve approach)
- Adaptive designs require:
 - Specification of multiple model parameters
 - Rapid DLT entry and reporting

Trials of combination therapies using adaptive designs

Method	Agents combined	Number of dose combinations	n	Number of RP2D combinations
Lee et al. (2008) ⁵⁹	Cisplatin and 9-nitrocamptothecin	12	54	1
Huang et al. (2007) ⁷¹	5-Azacytidine and Ara-C	4	34	4
Whitehead et al. (2012) ⁷⁶	Gemcitabine and MK-0752	10*	60‡	Still recruiting
Yuan and Yin (2011) ⁶⁵	Decitabine and recombinant interferon derivative	6	20	3
Bailey et al. (2009)67	Nilotinib and imatinib	5	535	1

*As per Whitehead et al.^{re} Estimated. \$Three patients subsequently removed from dose-determining set due to protocol deviations. Abbreviation: RP2D, recommended phase II dose.

Harrington JA, et al. (2013) Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2013.35

Phase I trials in pediatric oncology: challenges

- Cancer in children is rare: low N and accrual rate for trials
 - In 2017, only ~15,270 children and adolescents (age 0-19 years) will be diagnosed with cancer in US
 - For neuroblastoma (a solid tumor in nerve cells): only ~700 new cases per year in US
- Pediatric trials must satisfy additional FDA regulations
- Children are heterogeneous in stage of development which increases variability

1. Siegel, Miller, & Jemal. (2017) CA Cancer J Clin. 67(1):7-30.

2. Additional Protections for Children Involved as Subjects in Research. 45 CFR § 46, Subpart D (2009).

3. Doussau A, et al. (2016). *Contemp Clin Trials*. 47: 217–227.

Phase I trials in pediatric oncology: other considerations

- Most pediatric trials start after completion of adult trials
 Adult PK/PD and toxicity profile is typically available
- Pediatric starting dose: typically 80% of RP2D in adults adjusted for weight or body surface area (BSA)
- Pediatric trials typically explore fewer dose levels
 - Suggest ~4 doses (0.7, 1.0, 1.3, 1.6x RP2D in adults)
 - RP2D in children generally highly correlated with RP2D in adults

Doussau A, et al. (2016). Contemp Clin Trials. 47: 217-227.

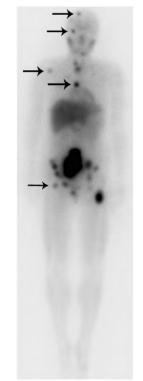
Systematic review of pediatric oncology trials

 Reviewed study design of published pediatric oncology phase 1 trials with combination therapies in 2014-2016 on PubMed

Search term:

Clinical trial, Phase I[ptyp] AND cancer[MeSH] AND "2014/01/01"[PDAT] : "2016/12/31"[PDAT] AND (combination OR combine OR combined OR combining) AND (pediatric OR children OR child OR adolescent OR young

 None of the N=152 trials used adaptive designs for combination therapies



New Approaches to Neuroblastoma Therapy (NANT) phase I study of Vorinostat & ¹³¹I-MIBG

- >50% neuroblastoma (NB) patients present with metastatic disease and have poor prognosis
- ¹³¹I-metaiodobenzylguanidine (MIBG) is a targeted radiotherapy for NB
- Vorinostat increases sensitivity of cancer cells to radiation
- **Objective:** To determine the MTDC of Vorinostat and MIBG in combination

Additional NB metastases detected on MIBG scan

DuBois SG, et al. (2015) *Clin Cancer Res*; 21(12) 2715-21
 DuBois SG & Matthay KK. (2008) *Nucl Med Biol*; 35:S35-48

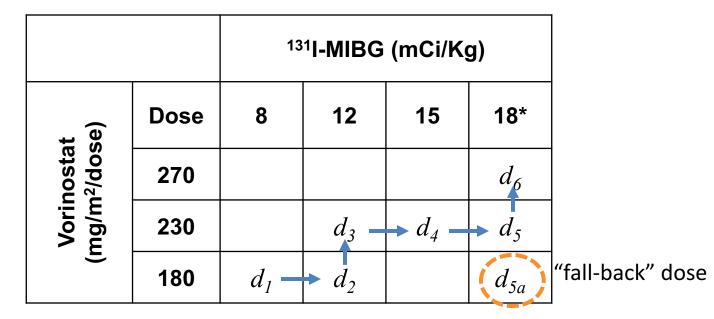
HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Vorinostat & ¹³¹I-MIBG: study design

- Relapsed or refractory NB patients (age 2-30 years)
- N=27 enrolled; 23 evaluable
- 3+3 design

-FARBER

CANCER AND BLOOD DISORDERS CENTER

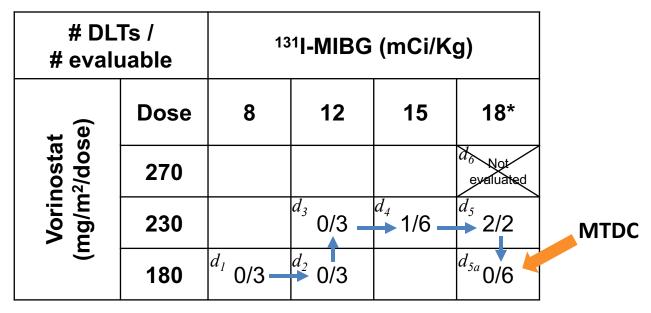

- 7 dose levels (6 planned; 1 "fall-back")
- DLTs (within 1st course of therapy)

Boston Children's

- Hematologic DLTs: engraftment failure, grade 4 hemolysis, anemia, bleeding, thrombocytopenia, neutropenia
- Non-hematological DLTs: grade≥3 toxicity (with exceptions)

Vorinostat & ¹³¹I-MIBG: doses

*MTD for ¹³¹I-MIBG as single agent


Select fixed dose-escalation path for drugs A and B Used 3+3 design

DuBois SG, et al. (2015) Clin Cancer Res; 21(12) 2715-21

Vorinostat & ¹³¹I-MIBG: dose-escalation results

- Dose d_5 exceeded target toxicity so d_6 was never evaluated
- De-escalate to d_{5a} to maintain highest dose of ¹³¹I-MIBG (active agent)
- Can an adaptive design identify the MTDC more efficiently?

DuBois SG, et al. (2015) Clin Cancer Res; 21(12) 2715-21

Opportunities to use dual-agent designs in pediatric oncology

- Prior adult toxicity data can be used to specify model priors
- RP2D in children typically similar to adults:
 - Explore small number of dose combinations
 - May need fewer number of patients
- Pediatric oncologists have previously adopted alternate designs (Rolling 6) for single agent trials

Doussau A, et al. (2016). Contemp Clin Trials. 47: 217–227.

Study Objective

To evaluate the relative performance of dual-agent dose escalation designs for phase I trials in pediatric oncology

ARVARD MEDICAL SCHOOL EACHING HOSPITAL

DUAL-AGENT DOSE ESCALATION SIMULATION METHODS

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Evaluating performance of dual-agent designs using simulations

- Several studies have compared the performance of dualagent designs using simulated data
- Simulation framework:
 - Create a set of scenarios where the true toxicity probability of each dose combination is known
 - For each scenario, run a mock trial using for each dual-agent design
 - Repeat for N trials
 - Compare average performance between designs

Published reviews of dual-agent designs

Published reviews	# dual- agent designs	# simulation scenarios	Dose combination matrices	Cohort size per escalation	Max N
Riviere, Dubois & Zohar (2015)*	6	10	5x3	3	60
Hirakawa et al. (2015)	5	16	3x3, 4x4, 4x2, 5x3	1	30
Lin & Yin (2015)*	5	10	5x3	3	60
Mander & Sweeting (2015)	4	7	4x4	2	40
Wages, Ivanova & Marchenko (2017)	3	12	3x3, 4x3, 3x4,	1	27, 36

Published reviews used large N and evaluated large dose combination matrices which may be infeasible for pediatric oncology trials

*Both papers used the same simulation scenarios and settings

Dose escalation methods evaluated in review papers

				Publ	ished rev	views	
Dose escalation method	Authors	Year	Riviere et al. (2015)	Hirakawa et al. (2015)	Lin & Yin (2015)	Mander et al. (2015)	Wages et al. (2017)
Estimation with order restrictions (CDP)	Conaway et al.	2004		\checkmark			\checkmark
Up and down with isotonic regression	Ivanova & Wang	2004	\checkmark		\checkmark		
Two-dimension CRM	Wang & Ivanova	2005	\checkmark				
Copula regression (COPULA)	Yin & Yuan	2009	\checkmark	\checkmark	\checkmark	\checkmark	
Latent contingency tables w/ Gumbel	Yin & Yuan	2009	\checkmark			\checkmark	
Up and down using T-statistic	Ivanova & Kim	2009	\checkmark		\checkmark		
Hierarchical Bayesian	Braun & Wang	2010		\checkmark			
Partial order CRM (POCRM)	Wages et al	2011	\checkmark	\checkmark	\checkmark		\checkmark
Generalized CRM	Braun & Jia	2013				\checkmark	
Shrinkage logistic model	Hirakawa et al.	2013		\checkmark			
Bayesian Optimal Interval (BOIN)	Lin & Yin	2015			\checkmark		\checkmark
Product of independent beta probabilities	Mander & Sweeting	2015				\checkmark	

Methods with highest average probability to recommend the true MTDC (for each review)

Published reviews

Dose escalation method	Authors	Year	Riviere et al. (2015)	Hirakawa et al. (2015)	Lin & Yin (2015)	Mander et al. (2015)	Wages et al. (2017)
Estimation with order restrictions (CDP)	Conaway et al.	2004		\checkmark			\checkmark
Up and down with isotonic regression	Ivanova & Wang	2004	\checkmark		\checkmark		
Two-dimension CRM	Wang & Ivanova	2005	\checkmark				
Copula regression (COPULA)	Yin & Yuan	2009	\checkmark	\checkmark	\checkmark	\checkmark	
Latent contingency tables w/ Gumbel	Yin & Yuan	2009	\checkmark			\checkmark	
Up and down using T-statistic	Ivanova & Kim	2009	\checkmark		\checkmark		
Hierarchical Bayesian	Braun & Wang	2010		\checkmark			
Partial order CRM (POCRM)	Wages et al	2011	\checkmark	\checkmark	\checkmark		\checkmark
Generalized CRM	Braun & Jia	2013				\checkmark	
Shrinkage logistic model	Hirakawa et al.	2013		\checkmark			
Bayesian Optimal Interval (BOIN)	Lin & Yin	2015			\checkmark		\checkmark
Product of independent beta probabilities	Mander & Sweeting	2015				\checkmark	

Selected methods for our simulation study

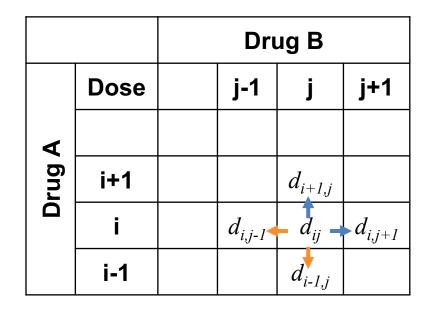
			Published reviews				
Dose escalation method	Authors	Year	Riviere et al. (2015)	Hirakawa et al. (2015)	Lin & Yin (2015)	Mander et al. (2015)	Wages et al. (2017)
Estimation with order restrictions (CDP)	Conaway et al.	2004		\checkmark			✓
Up and down with isotonic regression	Ivanova & Wang	2004	\checkmark		\checkmark		
Two-dimension CRM	Wang & Ivanova	2005	\checkmark				
Copula regression (COPULA)	Yin & Yuan	2009	\checkmark	\checkmark	\checkmark	\checkmark	
Latent contingency tables w/ Gumbel	Yin & Yuan	2009	\checkmark			\checkmark	
Up and down using T-statistic	Ivanova & Kim	2009	\checkmark		\checkmark		
Hierarchical Bayesian	Braun & Wang	2010		\checkmark			
Partial order CRM (POCRM)	Wages et al	2011	\checkmark	\checkmark	\checkmark		\checkmark
Generalized CRM	Braun & Jia	2013				\checkmark	
Shrinkage logistic model	Hirakawa et al.	2013		\checkmark			
Bayesian Optimal Interval (BOIN)	Lin & Yin	2015			\checkmark		\checkmark
Product of independent beta probabilities	Mander & Sweeting	2015				\checkmark	

- CDP, Copula, POCRM have high recommendation rates across 2 reviews
- BOIN has comparable recommendation rates and is intuitive and practical

CANCER AND BLOOD DISORDERS CENTER

Design considerations: cohort size and sample size

 Cohort size: # patients enrolled per dose combination before the next dose is determined


- Typical cohort size = 1, 2, or 3

- Sample size (N): for adaptive designs, trial will end after enrolling N patients
- Sample size depends on:
 - Desired accuracy of identifying the true MTDC
 - Number of dose combinations evaluated
 - Cohort size
 - Expected accrual rates
 - Study budget

Design considerations: allowable doses for escalation and de-escalation

- BOIN, Copula, and CDP allows only escalation or de-escalation to adjacent doses along rows or columns (no diagonal or off-diagonal doses allowed)
- POCRM allows escalation/de-escalation to any dose recommended by algorithm

Wages, Ivanova,& Marchenko. (2016) J Biopharm Stat; 26(1): 150-166.

Notation and definitions

Term	Definition
d_{ij}	Combination of dose <i>i</i> for drug A ($i=1,,I$) and dose <i>j</i> for drug B ($j=1,,J$)
π_{ij}	Probability of DLT at d_{ij}
n _{ij}	Number of patients treated on d_{ij}
${\cal Y}_{ij}$	Number of observed DLTs from patients treated at d_{ij}
arphi	Target toxicity level (e.g. 30%)

Wages, Ivanova, & Marchenko. (2016) J Biopharm Stat; 26(1): 150-166.

Bayesian Optimal Interval (BOIN) design: overview

- BOIN is a practical, intuitive, non-parametric design
- Select DLT probabilities:
 - $-\varphi_1$ where escalation is needed (e.g. $\varphi_1=0.6\varphi$)
 - $-\varphi_2$ where de-escalation is needed (e.g. $\varphi_1=1.4\varphi$)

 $-\varphi_1 < \varphi_2$

• Define optimal tolerance interval as:

$$\begin{split} \left[\varphi - \varDelta_L, \varphi + \varDelta_U \right] \\ \text{where optimal cutoffs } \varDelta_L = \varphi - \frac{\log\left(\frac{1-\varphi_1}{1-\varphi}\right)}{\log\left(\frac{\varphi(1-\varphi_1)}{\varphi_1(1-\varphi)}\right)}, \varDelta_U = \frac{\log\left(\frac{1-\varphi}{1-\varphi_2}\right)}{\log\left(\frac{\varphi_2(1-\varphi)}{\varphi(1-\varphi_2)}\right)} - \varphi \end{split}$$

Lin & Yin. (2015) Stat Methods Med Res. 26(5):2155-2167

BOIN: dose-finding algorithm

- 1. Start at lowest dose d_{II}
- 2. At current dose d_{ij} , calculate $\hat{\pi}_{ij}$

$$\hat{\pi}_{ij} = y_{ij} / n_{ij}$$

3. Select next dose

Condition	Action
$\hat{\pi}_{_{ij}} \leq arphi - \Delta_{_L}$	Escalate to d_{i*j*} that maximizes
$\mathcal{M}_{ij} = \varphi \Delta_L$	$\Pr\{\hat{\pi}_{i^*j^*} \in (\varphi - \Delta_L, \varphi + \Delta_U) \mid y_{i^*j^*}\}$
$\varphi - \Delta_L < \hat{\pi}_{ii} < \varphi + \Delta_U$	Stay at <i>d</i> _{ij}
5	De-escalate to d_{i*j*} that maximizes
$\hat{\pi}_{ij} \ge \varphi + \Delta_L$	$\Pr\{\hat{\pi}_{i^*j^*} \in (\varphi - \Delta_L, \varphi + \Delta_U) \mid y_{i^*j^*}\}$

(If more than one optimal dose, randomly select a dose)

- 4. Continue until max N
- 5. Calculate final $\hat{\pi}_{ij}$ using bivariate isotonic regression using all data
- 6. MTDC is dose with toxicity rates closest to φ

Wages, Ivanova,& Marchenko. (2016) J Biopharm Stat; 26(1): 150-166.

Copula regression: overview

- Specify marginal toxicity of drugs A and B
- Model true toxicities as:

 p_i^{α} = Probability of DLT at dose *i* for drug A

 q_j^{β} = Probability of DLT at dose *j* for drug B

 $\alpha > 0$, $\beta > 0$ are unknown parameters

Calculate joint toxicity probability using copula-type model

$$\pi_{ij} = \mathbf{1} - \left\{ (\mathbf{1} - p_i^{\alpha})^{-\gamma} + (\mathbf{1} - q_j^{\beta}) - \mathbf{1} \right\}^{-1/\gamma}$$

 $\gamma > 0$ characterizes the interaction between drugs

Yin & Yuan. (2009) JRSSC. 58(2): 211-224

Copula: Bayesian model

Suggested prior distributions

 $\alpha, \beta \sim \text{Gamma}(2,2)$

 $\gamma \sim \text{Gamma}(0.1, 0.1)$

Likelihood function

$$L(\alpha, \beta, \gamma \mid data) \propto \prod_{i=1}^{I} \prod_{j=1}^{J} \pi_{ij}^{y_{ij}} (1 - \pi_{ij})^{n_{ij} - y_{ij}}$$

Posterior distribution

 $f(\alpha, \beta, \gamma | data) \propto L(\alpha, \beta, \gamma | data) f(\alpha) f(\beta) f(\gamma)$

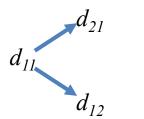
DANA-FARBER Boston Children's CANCER AND BLOOD DISORDERS CENTER Yin & Yuan. (2009) JRSSC. 58(2): 211-224

Copula: dose-finding algorithm

- 1. Select fixed cutoffs c_e and c_d for escalation or de-escalation
- 2. Start at lowest dose d_{II}
- 3. At current dose d_{ij}

Condition	Action
$\Pr(\hat{\pi}_{ij} < \varphi) > c_e$	Escalate to dose with toxicity probability higher than current value and closest to φ
$\Pr(\hat{\pi}_{ij} > \varphi) > c_d$	De-escalate to dose with toxicity probability lower than current value and closest to φ . Terminate trial if current dose is d_{II}
Otherwise	Stay at current dose

- 4. Continue until max N
- 5. MTDC is dose with DLT rate closest to φ


Yin & Yuan. (2009) JRSSC. 58(2): 211-224

Simple and partial orders

- Unclear if d_{21} or d_{12} is more toxic
- Represent doses as partial order:

		Drug B			
4	Dose	1	2	3	
rug A	2	<i>d</i> ₂₁	<i>d</i> ₂₂	<i>d</i> ₂₃	
	1	<i>d</i> ₁₁	<i>d</i> ₁₂	<i>d</i> ₁₃	

 Two possible simple orders that satisfy this partial order

$$d_{11} \longrightarrow d_{21} \longrightarrow d_{12}$$

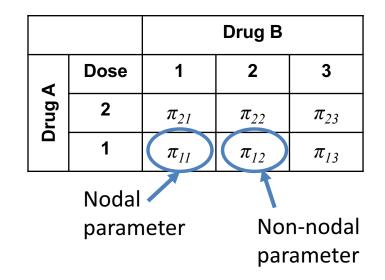
 $d_{11} \longrightarrow d_{12} \longrightarrow d_{21}$

Wages, Ivanova, & Marchenko. (2016) J Biopharm Stat; 26(1): 150-166.

Six possible orders for 2x3 matrix

Description	Simple order
Across rows	$d_{11} \rightarrow d_{12} \rightarrow d_{13} \rightarrow d_{21} \rightarrow d_{22} \rightarrow d_{23}$
Up columns	$d_{11} \rightarrow d_{21} \rightarrow d_{12} \rightarrow d_{22} \rightarrow d_{13} \rightarrow d_{23}$
Up diagonals	$d_{11} \rightarrow d_{12} \rightarrow d_{21} \rightarrow d_{13} \rightarrow d_{22} \rightarrow d_{23}$
Down diagonals	$d_{11} \rightarrow d_{21} \rightarrow d_{12} \rightarrow d_{22} \rightarrow d_{13} \rightarrow d_{23}$
Down-up diagonals	$d_{11} \rightarrow d_{12} \rightarrow d_{21} \rightarrow d_{22} \rightarrow d_{13} \rightarrow d_{23}$
Up-down diagonals	$d_{11} \rightarrow d_{21} \rightarrow d_{12} \rightarrow d_{13} \rightarrow d_{22} \rightarrow d_{23}$

		Drug B				
A	Dose	1	2	3		
rug	2	d_{21}	d ₂₂ -	→ d ₂₃		
	1	d_{11} —	<i>d</i> ₁₂	$\rightarrow d_{13}$		


Wages, Conaway, & O'Quigley. (2011) Clin Trials. 8(4): 380-389

Nodal and non-nodal parameters

- Nodal parameter: ordering is known relative to all other parameters
- Non-nodal parameter: ordering is not known relative to all other parameters

Wages, Ivanova, & Marchenko. (2016) J Biopharm Stat; 26(1): 150-166.

HARVARD MEDICAL SCHOOL

CDP design: overview

- CDP design uses different estimation procedures for nodal and non-nodal parameters
- CDP uses a two-stage design:
 - Stage 1: quickly escalate in single patients until first DLT
 - Stage 2: Bayesian dose-escalation
 - Prior distribution of $\pi_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$
 - Update toxicity probabilities:

$$\hat{\pi}_{ij} = \frac{y_{ij} + \alpha_{ij}}{n_{ij} + \alpha_{ij} + \beta_{ij}}$$

• Update posterior means using Hwang and Peddada (1994) method

1. Conaway, Dunbar, & Peddada. (2004) *Biometrics*. 60:661-669

2. Hwang & Peddada. (1994) Ann Stat. 22:67-93

CDP: design specifications

- Investigators to specify:
 - Expected toxicity probability $E[\pi_{ij}]$
 - Upper limit u_{ij} such that 95% certain toxicity probability $\leq u_{ij}$
- Solve two equations to specify α_{ij} and β_{ij}

$$E[\pi_{ij}] = \frac{\alpha_{ij}}{\alpha_{ij} + \beta_{ij}} \qquad \Pr(\pi_{ij} < u_{ij}) = 0.95$$

Select subset of possible orders for combination matrix

Conaway, Dunbar, & Peddada. (2004) Biometrics. 60:661-669

CDP: stage 2 dose-finding algorithm

- 1. Define *A* = {set of treatments administered so far}
- 2. Compute loss vs. target toxicity for each $d_{ij} \in A$

$$Loss(\hat{\pi}_{ij}, \varphi) = \left| \hat{\pi}_{ij} - \varphi \right|$$

3. Determine dose d_{i*j*} with minimum observed loss [additional rules for >1 doses with same minimum loss]

Condition	Action
$\pi_{i^*\!j^*} < arphi$	Escalate to new dose not previously evaluated
$\pi_{i^*\!j^*} \ge \varphi$	Next dose is d_{i*j*}

- 4. Continue until max N
- 5. MTDC is dose with DLT rate closest to φ

Conaway, Dunbar, & Peddada. (2004) Biometrics. 60:661-669

Partial order continual reassessment method (POCRM): overview

- POCRM considers a set of simple orders consistent with combination matrix
- Applies continual reassessment method (CRM) within orders to evaluate MTDC
- Two-stage design:
 - Stage 1: quickly escalate in single patients until first DLT
 - Stage 2: Bayesian dose-escalation

Wages, Conaway, & O'Quigley. (2011) Clin Trials. 8(4): 380-389

POCRM: Bayesian model

- Consider m = 1, ..., M orders
- Prior weights for orders $\tau(1), ..., \tau(M)$
- Model toxicity probability under power model

 $\hat{\pi}_{ij} = [\alpha_{ij}(m)]^{a_m}$

- Select order m^* that maximizes the updated order weight
- Estimate toxicity probabilities using power model assuming order m*

Wages, Conaway, & O'Quigley. (2011) Clin Trials. 8(4): 380-389

POCRM: stage 2 dose-finding algorithm

- 1. Estimate π_{ij} based on observed data so far
- 2. Assign next dose $d_{i^*j^*}$ with minimum observed loss $Loss(\hat{\pi}_{ij}, \varphi) = |\hat{\pi}_{ij} \varphi|$
- 3. Continue until max N
- 4. MTDC is dose with DLT rate closest to φ

Conaway, Dunbar, & Peddada. (2004) Biometrics. 60:661-669

Simulation settings and software

Simulation settings

- Maximum N = 24
- Cohort size = 1
- Target toxicity (φ) = 0.30
- MTDC defined as $\varphi \pm 0.05$
- Number of scenarios: 7
- Combination matrices: 2x3, 2x4
- Number of simulations = 2000

Simulation software

- BOIN and POCRM were simulated using available R packages
- Copula was simulated using a C++ program (courtesy of Dr. Ying Yuan)
- CDP was simulated using GAUSS (courtesy of Dr. Mark Conaway)

Simulation scenarios (2x3)

MTDC at upper middle dose

Scenario 1		Drug B				
A	Dose	1 2 3				
Drug A	2	0.10	0.30 [•]	0.60		
	1	0.05	0.15	0.45		

MTDC at lowest dose

Scenario 3		Drug B				
A	Dose	1 2 3				
Drug A	2	0.40	0.60	0.80		
	1	0.30 [•]	0.45	0.70		

MTDC at lower middle dose

Sce	enario 2	Drug B				
A	Dose	1 2 3				
Drug A	2	0.20	0.40	0.60		
	1	0.15	0.30•	0.45		

MTDC at highest dose

Scenario 4		Drug B				
A	Dose	1 2 3				
Drug A	2	0.05	0.15	0.30		
	1	0.01	0.1	0.20		

Safe dose • MTDC Toxic dose

Simulation scenarios (2x4)

MTDC at bottom-right dose

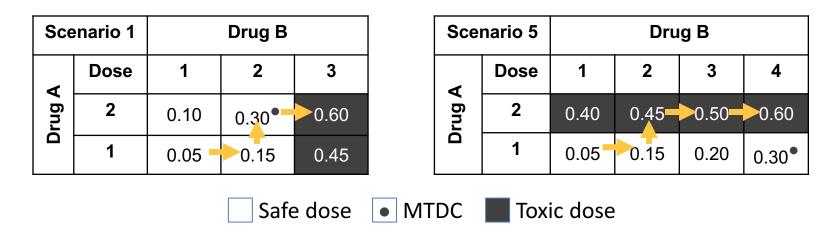
Sce	nario 5	Drug B				
⊿	Dose	1 2 3 4				
Drug A	2	0.40	0.45	0.50	0.60	
	1	0.05	0.15	0.20	0.30 [•]	

Two possible MTDC's

Sce	nario 6	Drug B			
∡	Dose	1 2 3 4			
Drug A	2	0.15	0.27•	0.40	0.60
	1	0.10	0.20	0.30 [•]	0.50

Two possible MTDC's with separation

Sce	nario 7	Drug B					
∡	Dose	1	2	3	4		
Drug A	2	0.27 [•]	0.40	0.50	0.60		
	1	0.10	0.20	0.30 [•]	0.45		

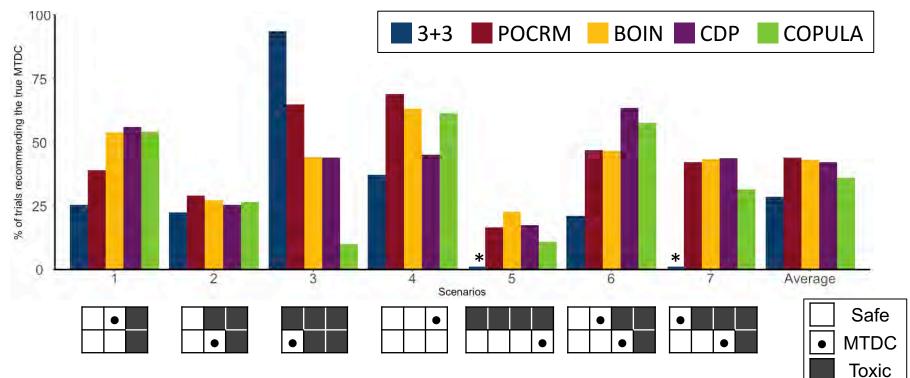

Safe dose • MTDC

Toxic dose

Include naïve 3+3 approach for comparison

Select fixed paths for 2x3 and 2x4 matrices

MTDC combination is not evaluated by 3+3 design in Scenarios 5 and 7



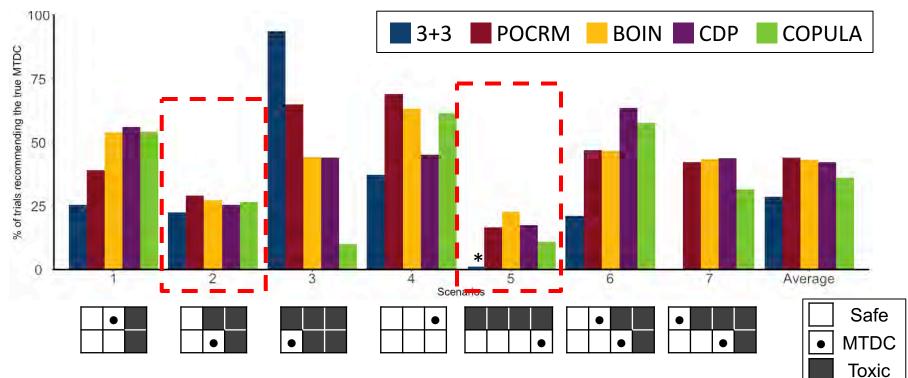
SIMULATION RESULTS

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL



• No single method had best performance across all 7 scenarios

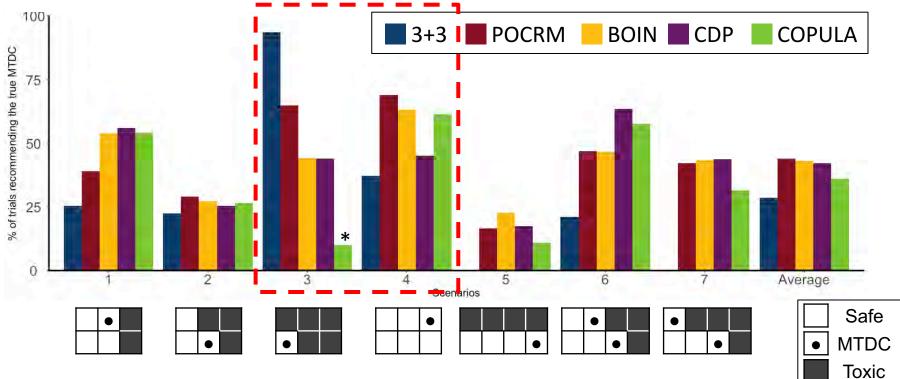
* The fixed path for the 3+3 design does not evaluate the true MTDC


- Mediocre average rates across all methods (29-44%) reflect small N
- POCRM, BOIN, CDP (44%) has higher rates than 3+3 (29%)

* The fixed path for the 3+3 design does not evaluate the true MTDC

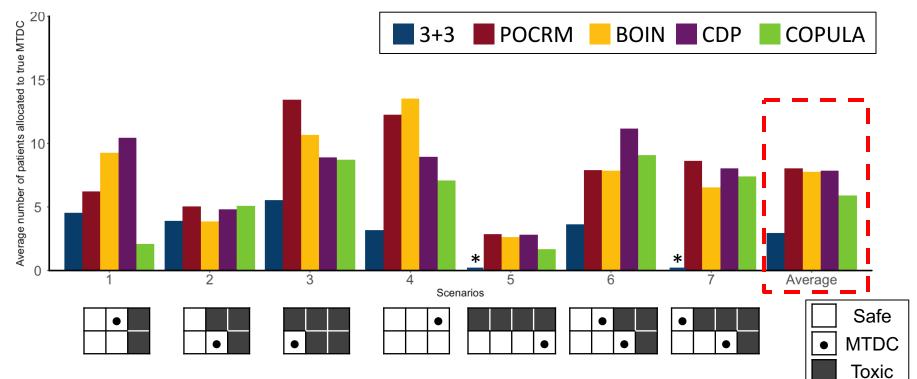
HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

• Relatively low recommendation rates for scenarios 2 and 5


* The fixed path for the 3+3 design does not evaluate the true MTDC

HARVARD MEDICAL SCHOOL

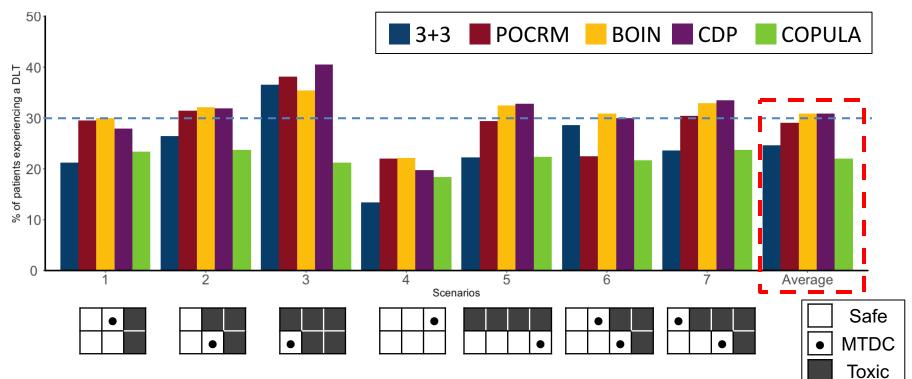
TEACHING HOSPITAL


- For scenario 3, 3+3 had highest rates since MTDC is starting dose
- For scenario 4, 3+3 had lowest rates since MTDC is highest dose

* Copula method terminates trial if need to de-escalate from starting dose d11; MTDC not declared if trial ended early

DANA-FARBER Boston Children's CANCER AND BLOOD DISORDERS CENTER

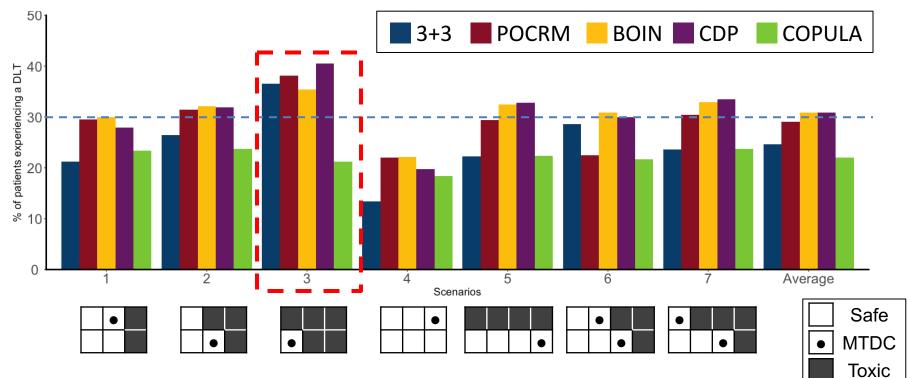
Average number of patients allocated to MTDC



- Number of patients allocated to MTDC reflects recommendation rates (from previous plots)
- 3+3 and Copula have lower numbers of patients allocated to MTDC on average
 * The fixed path for the 3+3 design does not evaluate the true MTDC

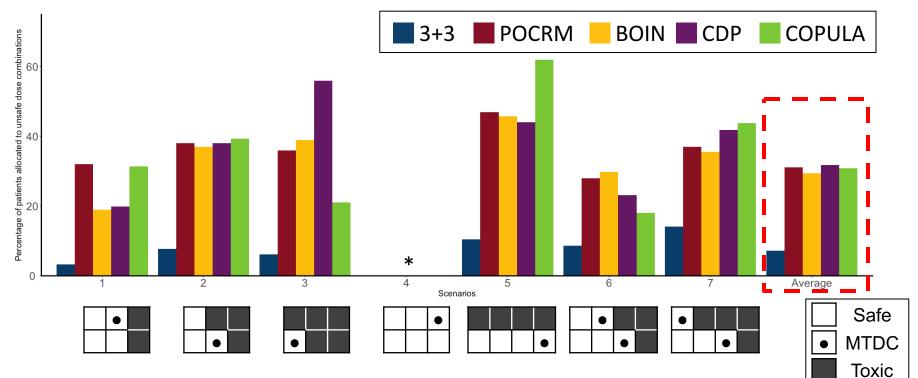
DANA-FARBER Boston Children's CANCER AND BLOOD DISORDERS CENTER

Proportion of patients experiencing a DLT



• POCRM, BOIN, and CDP has toxicity levels near φ =30% on average

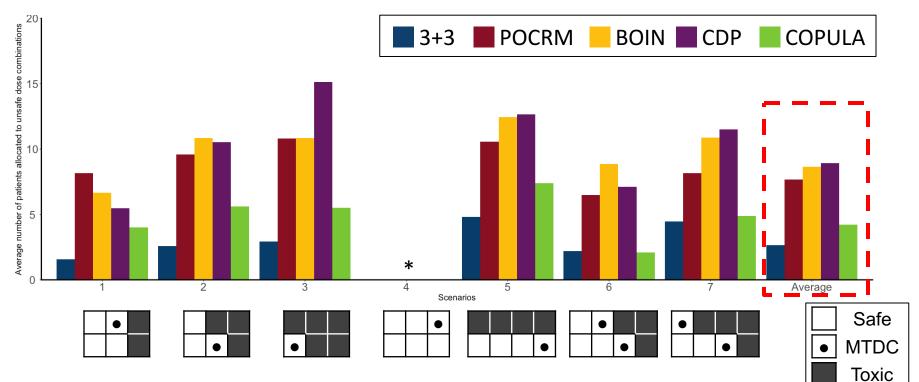
Proportion of patients experiencing a DLT



- For scenario 3, DLT rates can be elevated (35-40%) since starting dose is MTDC and other doses are increasingly toxic
- For N=24, additional 5-10% DLT rate is equivalent to an average of 1-2 additional DLTs per trial

CANCER AND BLOOD DISORDERS CENTER

Proportion of patients allocated to unsafe dose


- Adaptive methods have similar average allocation rates for unsafe doses (with toxicity rates above φ =30%)
- 3+3 has low allocation rates for unsafe doses but is overly conservative in dose escalation

* All doses for scenario 4 are safe by definition

Average number of patients allocated to unsafe dose

- POCRM, BOIN, and CDP allocates ~8-9 patients to unsafe doses on average (out of N=24)
- Copula has lower # patients allocated since trials can have lower total N due to early termination rule

* All doses for scenario 4 are safe

Method	Avg % of trials recommending true MTDC	Avg % patients allocated to unsafe dose	Ease of under- standing	Software available	Other considerations
POCRM	44%	31%			
BOIN	43%	29%			
CDP	42%	32%			
Copula	36%	31%			
3+3	29%	7%			

Method	Avg % of trials recommending true MTDC	Avg % patients allocated to unsafe dose	Ease of under- standing	Software available	Other considerations
POCRM	44%	31%	Moderate -Difficult	Yes	
BOIN	43%	29%	Easy	Yes	
CDP	42%	32%	Difficult	No, (requires GAUSS)	
Copula	36%	31%	Moderate	Yes	
3+3	29%	7%	Easy	N/A	

Method	Avg % of trials recommending true MTDC	Avg % patients allocated to unsafe dose	Ease of under- standing	Software available	Other considerations
POCRM	44%	31%	Moderate -Difficult	Yes	Implemented in adult trials; Leverages well-known CRM method
BOIN	43%	29%	Easy	Yes	No prior specifications
CDP	42%	32%	Difficult	No, (requires GAUSS)	Need to specify priors based on expected and upper limits of toxicity rates per dose
Copula	36%	31%	Moderate	Yes	Sensitive to specification of priors
3+3	29%	7%	Easy	N/A	Cannot explore full combination matrix

Method	Avg % of trials recommending true MTDC	Avg % patients allocated to unsafe dose	Ease of under- standing	Software available	Other considerations
POCRM	44%	31%	Moderate -difficult	Yes	Implemented in adult trials; Leverages well-known CRM method
BOIN	43%	29%	Easy	Yes	No prior specifications
CDP	42%	32%	Difficult	No, (requires GAUSS)	Need to specify priors based on expected and upper limits of toxicity rates per dose
Copula	36%	31%	Moderate	Yes	Sensitive to specification of priors
3+3	29%	7%	Easy	N/A	Cannot explore full combination matrix

Future directions

- Evaluate methods with smaller sample size (N=18) to be comparable with average size of 3+3
- Include rule-based Rolling 6 design which is commonly used in pediatric oncology trials

Conclusions

- BOIN and POCRM represent safe and efficient methods to determine the RP2D for pediatric oncology trials
- The naïve single-agent (3+3) approach may:
 - Be overly conservative with dose escalation
 - Potentially miss the true MTDC

Acknowledgements

• Derek Shyr, MS candidate

- Dongjing Guo, MS
- Steven G. DuBois, MD, MS
- Wendy London, PhD
- Mark R. Conaway, PhD
- Ying Yuan, PhD
- Hasan Al-Sayegh, MPH, MBChB

