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a b s t r a c t 

In biomedical studies, it is often of interest to estimate how the risk profile of an adverse 
event is related to the timing of an intervention. For example, in randomized controlled 
clinical trials of bivalent human papillomavirus (HPV) vaccine, investigators are interested 
to know how miscarriage rate relates to the timing of HPV vaccination. A risk window is 
defined as an interval for the covariate where the risk of adverse event is elevated. Existing 
methods cannot make simultaneous inference on both the risk window and the magnitude 
of the risk. A hierarchical Bayesian logistic regression model is developed to estimate 
the risk window of miscarriage on the time of conception with respect to vaccination. 
Hierarchical priors are proposed and used in Markov Chain Monte Carlo for statistical 
inference. The performance of the Bayesian model and two existing methods is evaluated 
in simulation settings with varying risk windows and relative risks. The proposed model 
provides both point and interval estimates for the risk window regarding to vaccination, 
and captures its effect modification on miscarriage risk in pregnancy. Analysis of the 
vaccine trial using the proposed model shows no significant evidence of an association 
between the HPV vaccine and miscarriage risk. The hierarchical Bayesian model is useful 
in general in analyzing a randomized trial or an epidemiological study in which the effect 
of an agent is potentially modified by a temporal factor. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In the safety evaluation of the bivalent vaccine against human papillomavirus (HPV), a higher rate of miscarriage was 
observed in the HPV-vaccine arm (13.7%) than in the reference hepatitis A vaccine (HAV) arm (9.2%) among pregnancies with 
conception around vaccination (Wacholder et al., 2010) in a pooled analysis of pregnancy outcomes in two large scale phase 
III trials. In response, Wacholder et al. (2010) conducted a detailed evaluation of miscarriage. Without precise knowledge of 
the subset of pregnancies that might be affected by the vaccine, they used a permutation test based on the lowest p-value 
for testing the equalities of miscarriage rates among overlapping subsets of pregnancies defined on risk window between 
days of estimated conception and vaccination. The permutation test had more power than the test method based on a pre
specified window unless the window was almost correctly specified. Although the permutation test failed to reject the null 
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hypothesis of no higher adverse effect of the bivalent HPV vaccine (p = 0.16), it remained a concern that a small effect 
might exist in pregnancies conceived within a certain time period after vaccination. In this paper, we investigate whether 
the vaccine associates with any risk, and if so, we proceed to find the particular risk window. The risk window is defined as 
a particular block of the time between the vaccination and the conception during which the miscarriage risk is elevated. In 
other words, the goal of this study is to find out whether administration of the bivalent HPV vaccine during a prospectively 
identified risk window modifies the miscarriage risk in pregnancies. 

We intend to provide point estimates and measures of uncertainty for the location and width of the risk window and 
the magnitude of relative risk (RR). The permutation test used in previous analysis was limited for providing only a p-value, 
which contains information of the test statistics under the null hypothesis. However, it did not provide point or interval 
estimates for the window or the magnitude of RR under the alternative hypothesis. 

The case-series report used for adverse event following hepatitis B vaccine (Geier and Geier, 2004) provided a descriptive 
analysis but did not offer information on the strength of the association. In Thomas’ comprehensive review of methods for 
modeling dose–response relationships in environmental epidemiology (Thomas, 2009), he remarked that simultaneously 
addressing the location of risk threshold and the magnitude of risk was difficult. Langholz et al. (1999) used grid searching 
for modeling time-delayed latency effects, they provided point estimates for both the minimum and maximum latency 
as well as the effect magnitude, but they did not provide methods for interval estimation or uncertainty evaluation. Chen 
et al. (2014) introduced a hierarchical Bayesian method for a threshold model for survival data with a single cut point. In this 
study, we are interested in capturing a risk window defined by two cut points. Existing statistical approaches are inadequate 
for assessing the impact of an intervention or an exposure when the effect is restricted to an unknown subset of the study 
population. This gives us strong motivation to develop an alternative Bayesian approach for the risk window problem. 

In this paper, we introduce a Bayesian logistic model to provide posterior distributions for the location of the risk window 
and the magnitude of the risk. We propose a logistic regression model for the relationship between the occurrence of 
miscarriage and the treatment and the risk window and develop the Bayesian inference procedures using Markov Chain 
Monte Carlo (Casella and George, 1992; Gilks et al., 1996). We then evaluate the performance of the Bayesian model in a 
series of simulations by studying the model’s ability to estimate true values of the risk window and magnitude of the risk, 
and comparing its power with existing methods. Finally, we illustrate the Bayesian model using data from the Costa Rica 
Vaccine Trial (CVT), a community-based double-blind randomized controlled phase III study of Cervarix sponsored by the 
US. National Cancer Institute (NCI) (Herrero et al., 2008). Women enrolled in CVT were healthy young adults 18–25 years of 
age residing in Costa Rica, who received either HPV vaccine as intervention group or HAV vaccine as control group (Herrero 
et al., 2008). The null hypothesis is that the bivalent HPV vaccine does not associate with additional miscarriage risk for 
pregnancies during any risk windows. The proposed method initiates simultaneous statistical inference on the location 
and width of the unknown risk window and the effect modification on the identified window. The method turns out to 
outperform the existing analytical approaches in situations where the effect of an agent is restricted to a temporal interval 
or risk window. The method is generally applicable to handle this kind of risk-window problems, which are common in 
safety analysis of randomized trials and in environmental/occupational epidemiology. 

2. Hierarchical Bayesian model 

Let Yi denote the binary outcome status for individual i = 1, 2, . . . , n (that is, Yi = 1 if miscarriage, and Yi = 0 otherwise). 
Let x1i represent the treatment/control that individual i receives (that is, x1i = 1 if HPV vaccine is administered as treatment, 
and x1i = 0 if HAV vaccine is administered as control). Let x2i be a continuous covariate representing the marker factor that 
may potentially interact with treatment (for example, the number of days between the vaccination and conception). Let zi be 
a 1×p vector of potential confounding variables such as age, race and body mass index. In many clinical and epidemiological 
studies, the marker factor effect may not be a simple linear function. In this paper, we consider an indicator function for the 
marker factor effect. Assuming a starting point c1 and an end point c2 defining the risk window (c1, c2), we introduce an 
indicator variable w(x2i) in the model that describes whether the value of the marker factor (or time from vaccination to 
conception in the context) is within the hypothesized risk window,  

1 if c1 < x2i < c2,w(x2i) = 0 otherwise. 

The effect of risk window for covariate x2 are illustrated in Fig. 1. Given the covariate vector (x1i, x2i, zi)T , we assume that 
the binary outcome Yi follows a Bernoulli distribution with P(Yi = 1|x1i, x2i, zi) = πi. The logistic regression model for Yi 
takes the following form 

logit(πi) = β0 + β1x1i + β2w(x2i) + β3x1iw(x2i) + β4 
T zi. (1) 

In biomedical research, the covariate x2i is often called as a surrogate marker or a biomarker (Cox, 1999). Model (1) addresses 
the marker factor x2i (duration between vaccination and conception) as an effect modifier via the interaction term β3. That 
is, the model allows the association between the types of vaccination and miscarriage (called ‘‘the risk’’ henceforth) to vary 
for individuals within and outside the risk window. The probability of the outcome πi = Pr{Yi = 1} can be expressed as 

exp(βT xi)
πi = ,


1 + exp(βT xi)
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Fig. 1. Illustration of the definitions of risk window and marker factor with regard to the date of last vaccination and onset of pregnancy in the Costa Rica 
vaccine trial. Specifically, (1) x2i is the marker factor, e.g., the time between the vaccination and the onset of pregnancy, with c1 and c2 representing the 
beginning and end of the risk window respectively; (2) the risk window is an unknown period of time of conception for the pregnancies with increased 
risk of miscarriage due to the vaccination. 

where xi = {1, x1i, w(x2i), x1iw(x2i), zi}T is the covariate vector of interest for individual i, and β = (β0, β1, β2, β3, β4)
T is 

the vector of regression coefficients. Given the observed data, the likelihood function is 

n 
f (y; c1, c2, β) = {π

yi (1 − πi)
1−yi } (2)i
 

i=1
 

where y = (y1, y2, . . . , yn)T and yi indicates the observed outcome status for individual i = 1, 2, . . . , n. We further assume 
that c1, c2 and x2i take values between 0 and 1, although the method can be generalized easily to x2i of different scales. 
When analyzing CVT trial data, the values of x2i can be converted to the interval (0, 1) using the percentile transformation 
as described by Gentle (2009). That is, each of x2i will be replaced by it’s sample percentile of (x21, x21, . . . , x2n). Once 
the interval (c1, c2) is estimated, it can be mapped back to the original scale of x2i according the sample quantile. All 
transformations will be automatically done by the software package for this paper described in Section 3. 

Because the likelihood function (2) is not a smooth function with respect to the parameters c1 and c2, there is no 
straightforward way to obtain the maximum likelihood estimates and their asymptotic distributions. We develop a Bayesian 
approach for the model inference by treating the regression coefficients β and the cut points of the risk window (c1 and c2) 
as random variables with probability distributions. 

We start with prior distributions for c1, c2 and β, then multiply them to the observed data likelihood function to obtain 
the posterior distributions (Bolstad, 2008). Due to the restriction 0 < c1 < c2 < 1 for the risk window, we propose a prior  

c1 c1distribution for c1 given c2 first. We have 0 < < 1, therefore, the prior distribution for c1 is given by  c2 ∼ Beta(2, q1)c2 c2 

with probability density function  q1−1 c1 c1 1 
b1(c1|c2) = q1(q1 + 1) 1 − × , 

c2 c2 c2 

where q1 > 0. For c2 we assume that c2 ∼ Beta(2, q2), with probability density function 

b2(c2) = q2(q2 + 1)c2(1 − c2)q2 −1 , 

where q2 > 0. The Beta prior here is flexible enough to accommodate the risk window restricted between 0 and 1. It 
is possible to replace the priors Beta(2, q1) and Beta(2, q2) by the more general form of Beta(q11, q12) and Beta(q21, q22), 
respectively. To reduce the influence of prior parameters q1 and q2 on the posterior of c1 and c2, we propose hyper prior 

1distributions for q1 and q2 in the form of gj(qj) ∝ for j = 1, 2. We use this form of gj(qj) to simplify the expression of qj (qj +1) 

posterior distribution of c1, c2 and β. However, our experience in numerical simulation shows that the impact of prior and 
hyper prior on the posterior distribution is very minor. 

Since there are no restrictions on the regression coefficient βj ∈ (−∞, +∞), we assume a multivariate normal prior 
∗ ∗of the form N(β , Σ ∗ ) for the regression coefficient vector β, where the prior knowledge can be incorporated through β 

and Σ ∗. For example, if historical knowledge can provide an estimate of the disease or adverse event incidence for response 
variable y, this information can be reflected in the prior distribution for the intercept parameter β0 

∗. The variance Σ ∗ reflects 
the uncertainty about the prior knowledge of β, in general, a large variance Σ ∗ can be used if there is little or no prior 
information about β. Let θ = (c1, c2, β, q1, q2)T be the parameter vector. By simple algebra, the prior density function for θ 
can be expressed as 

g(θ) ∝ b1(c1|c2)b2(c2)φ(β)g1(q1)g2(q2)  q1−1 c1 c1 
2 1 

= q1(q1 + 1) 1 − q2(q2 + 1)c2(1 − c2)q2 −1φ(β)2c c2 qj(qj + 1)2 j=1 

= c1(c2 − c1)q1−1c2 
−q1 (1 − c2)q2−1φ(β), 

∗where φ(β) is the probability density function of a multivariate normal distribution N(β , Σ ∗ ). 
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Based on the Bayes’ theorem, we derive the joint posterior distribution g(θ|y) by multiplying the prior distribution g(θ) 
to the likelihood function (1). This is further expressed as 

g(θ|y) ∝ g(θ) × f (y; c1, c2, β) 
−q1

= c1(c2 − c1)q1−1c (1 − c2)q2−1φ(β)f (y; c1, c2, β).2 

We then propose using the Gibbs sampling techniques iteratively to draw random samples from the conditional distributions 
of all parameters (Gilks et al., 1996). This provides random samples that approximate the marginal posterior distributions. 
The point and interval estimates can be obtained from the posterior distribution samples accordingly. The sampling 
algorithm proceeds as follows. 

1. We start with initial values of the unknown parameters for regression coefficients and hyper parameters. The initial 
values for the regression coefficient vector β(0) are set to be β(0) 

= 0. The initial values for q1 and q2 are taken to be 
(0) (0)q = 2 and q = 2.1 2 

(k) (k) (k+1) (k+1)2. Conditional on β(k), q and q , one sample of the threshold parameter (c , c ) is drawn from the conditional 1 2 1 2 
distribution of 

(k) (k)f1(c1, c2|y, β(k), q , q ).1 2 

(k+1) (k+1)3. Conditional on the risk window endpoints c and c , one sample of the regression coefficients β(k+1) is drawn 1 2 
(k+1) (k+1)from the conditional distribution f2(β|y, c , c ).1 2 

(k+1) (k+1) (k+1) (k+1) (k+1) (k+1)4. Samples of q , q are drawn from f3(q1|y, β(k+1), c , c ) and f4(q2|y, β(k+1), c , c ) respectively.1 2 1 2 1 2 
5. Steps 2 − 4 are repeated until the random samples for all parameters reach stationarity. 

While the procedures are similar to the algorithm proposed by Chen et al. (2014), methods in this paper are complicated 
for using multiple cut points c1, c2. Below we provide more details on how to sample from the conditional distributions in 
Steps 2, 3, and Step 4 of the above algorithm. 

In Step 2, we draw a pair of sample {(c1, c2) : c1 < c2} with the following conditional distribution 

(k)(k) (k)(k) (k) −1 −q1f1(c1, c2|y, β(k), q , q ) ∝ c1(c2 − c1)q1 c (1 − c2)q2 −1f (y; c1, c2, β(k)).1 2 2 

More specifically, the conditional distribution of f1(c1, c2|·) can be obtained by applying Metropolis–Hastings algorithms 
(k) (k) (k)(Metropolis et al., 1953; Hastings, 1970). For a small constant δ0, let δ1 = min{δ0, c /2, (c − c )/2} and δ2 = 1 2 1 

(k) (k) (k) (k) (k)min{δ0, (c −c )/2, (1−c )/2}. A candidate sample c̃j for cj is generated from the uniform distribution U(c −δj, c +2 1 2 j j 
δj), for j = 1 and 2. Let   

(k) (k)f1(c̃1, c̃2|y, β(k), q , q )
α1 = min 1 2 , 1 ,

(k) (k) (k) (k)f1(c , c |y, β(k), q , q )1 2 1 2 

(k+1) (k+1) (k+1) (k) (k+1) (k)and u ∼ U(0, 1). If u ≤ α1, then let c = c̃1 and c = c̃2, otherwise, let c = c and c = c .1 2 1 1 2 2 
In Step 3, we take 

(k+1) (k+1) (k+1) (k+1)f2(β|y, c , c ) ∝ φ(β)f (y; c , c , β).1 2 1 2 

Similar to Step 2, the conditional distribution of f2(β|·) can be obtained by applying Metropolis–Hastings algorithms 

(Metropolis et al., 1953; Hastings, 1970). The candidate sample β̃ for β is generated from a conditional normal distribution 

φ( β̃|β(k)) with the mean β(k) and variance–covariance matrix obtained by fitting a regular logistic regression model with 
(k+1) (k+1)threshold parameters given by c , c . Then let β(k+1) 

= β̃ with probability 1 2   
(k+1) (k+1) ˜φ( β̃)f (y; c , c , β)

α2 = min 1 2 , 1 . 
(k+1) (k+1)

, β(k)φ(β(k))f (y; c , c )1 2 

Note that φ( β̃|β(k)) = φ(β(k)
|β̃) are the probability density functions for the candidate sample and they cancel out in the 

formula for α2. 
In Step 4, we take 

(k+1) (k+1) (k+1) (k+1) (k+1) −q1 (k)f3(q1|c , c ) ∝ {c − c }
q1 (c ) = exp(−q1λ ),1 2 2 1 2 1
 

(k+1) (k+1) (k+1) (k)
f4(q2|c , c ) ∝ {1 − c }
q2 = exp(−q2λ ),1 2 2 2    (k+1)

(k) (k) (k+1)1
 
1 (k+1) 2 2
where λ = − log 1 − 

c and λ = − log 1 − c , respectively. It is obvious that both conditional distributions 
c2
 

(k+1) (k+1) (k+1) (k+1) (k) (k)
of (q1|c , c ) and (q2|c , c ) follow an exponential distribution with parameters λ and λ , respectively. 1 2 1 2 1 2 
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Eventually, we generate the Markov Chain Monte Carlo (MCMC) sample sequence with B0 steps of burn-in and additional 
B steps of iterations. The random samples obtained from MCMC sampling approximate the marginal posterior distributions, 
after excluding the initial burn-in period (the first B0 iterations). To make sure that the MCMC samples converge to a 
stationary distribution, we recommend users analyze the posterior samples using a standard statistics output analysis and 
diagnostics tool such as CODA package for R (Plummer et al., 2006) for Markov Chain Monte Carlo. 

The posterior means and 100 × (1 − α)% credible intervals can be calculated from the sample means and percentiles of 
the posterior distributions respectively. By taking the iteration number B large enough, we have 

B0+B 
ĉj = 

1 
c(k)

, for j = 1, 2jR k=B0+1 

and 

B0+B1
ˆ β(k)β = . 

R k=B0+1 

We can then carry out hypothesis testing for regression coefficients β. For example, when testing the hypothesis that 
H0 : β3 = 0 versus Ha : β3 ≠ 0 at significance level α, we will reject H0 if zero lies outside the 100 × (1 − α)% credible 
interval of β3. More details regarding to hypothesis testing will be discussed in simulation studies (Section 4). 

3. Software for the proposed method 

We implemented the proposed hierarchical Bayesian method as a part of the R software package for biomarker threshold 
models (the bhm package) developed and maintained by the corresponding author of this manuscript (BEC). The most recent 
version of bhm package for R can be installed in two simple steps. 

1. Load the devtools package. 

library(devtools). 

This package allows users to install other R packages from a wide range of repositories. If you do not have ‘devtools’ in 
your R system, invoke R and then type install.packages(‘‘devtools’’) to install it. 

2. Install bhm package using the R command 

install_github(‘‘statapps/bhm’’). 

A stable version of bhm package is also available from the Comprehensive R Archive Network (https://CRAN.R
project.org/package=bhm) and can be installed using R command 

install.packages(‘‘bhm’’). 

Once the bhm package is installed in R, users can fit Hierarchical Bayesian Model for binary data through the following syntax 

fit = bhm(y ∼ x1 + x2 + x3 . . . , family = ‘binomial’, data = data, c.n = 2), 

where family specifies the distribution of response variable y and c.n specifies number of cut points to be used in the model. 
Both summary(fit) and print(fit) can be used to summary and display the results. More details on how to use the bhm package 
can be found from R command help(bhm). 

4. Simulation studies 

To evaluate the performance of the proposed method and make comparison to existing methods, we conducted a series 
of simulation studies with different sample sizes, and varying risk windows and magnitudes of risk. Data were generated 
based on Model (1) using different parameter combinations. A sample size of n = 2000 and 4000 was used because in 
epidemiology and population based observational studies, researchers often use thousands of observations to detect a small 
effect. Treatment covariate x1i was generated from a Bernoulli distribution with P(x1i = 1) = 0.5. Covariate x2i was a 
continuous variable with uniform distribution in interval (0, 1). For the main effects of Model (1), we take β0 = log(0.1) 
as the intercept, β1 = log(1.5) and β2 = log(2.5) as the true values of the parameters to generate the simulated data. We 
used β3 = log(1.5), log(2.5) and log(3.5) for small, moderate and large risk window and treatment interaction effect. The 
threshold parameters c1 and c2 take a set of pre-specified values between 0.1 and 0.9 such that the length of risk window 
tc = c2 − c1 = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. For any given covariates xi and parameters c1, c2, β, the response variable Yi 
was generated from a Bernoulli distribution with πi given by model (1). 

A chain of B0 +B = 5500 iterations including B0 = 500 burn-in and B = 5000 iterations was run for each MCMC sampling 
procedure. In order to reduce auto correlations among interactions, a thinning parameter of 10 was applied to the MCMC 
samplers. All measurements in simulations were based on R = 500 replications of simulated data sets. It took several days 

https://CRAN.R-project.org/package=bhm
https://CRAN.R-project.org/package=bhm
https://CRAN.R-project.org/package=bhm
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Table 1 

Empirical bias of the estimation for risk window (ĉ1, ĉ2) and the relative risk (β̂3) using the Bayesian method. The true values for β0 = log(0.1), 
β1 = log(1.5) and β2 = log(2.5) in all simulations. Results are based on B = 5000 MCMC iterations and R = 500 simulation replications. 

(c1 , c2) 

n = 2000 

tc β3 = log(
ĉ1 

1.5) 
ĉ2 β̂3 

β3 = log(2
ĉ1 

.5) 
ĉ2 β̂3 

β3 = log(3
ĉ1 

.5) 
ĉ2 β̂3 

(0.1, 0.2) 0.1 0.002 0.001 0.085 0.001 0.003 0.021 0.001 0.002 0.041 
(0.2, 0.4) 0.2 0.001 0.003 0.083 0.001 0.003 0.028 0.002 0.005 −0.031 
(0.2, 0.5) 0.3 0.002 0.004 −0.004 0.002 0.004 −0.002 0.003 0.003 −0.011 
(0.3, 0.7) 0.4 0.004 0.002 0.008 0.001 −0.001 0.006 0.003 0.001 −0.030 
(0.2, 0.7) 0.5 0.002 −0.001 0.006 0.003 −0.001 −0.007 0.007 −0.001 −0.048 
(0.3, 0.9) 0.6 0.001 −0.001 −0.011 −0.001 −0.003 −0.019 −0.001 −0.002 −0.023 

n = 4000 

(0.1, 0.2) 0.1 0.001 0.003 −0.002 0.001 0.006 −0.010 0.001 0.008 −0.009 
(0.2, 0.4) 0.2 0.001 0.001 0.010 0.001 0.001 −0.010 −0.001 0.001 0.006 
(0.2, 0.5) 0.3 −0.001 −0.001 −0.012 0.002 0.002 −0.020 −0.003 0.001 0.003 
(0.3, 0.7) 0.4 0.001 −0.001 0.008 −0.001 −0.006 −0.032 0.002 0.001 −0.010 
(0.2, 0.7) 0.5 0.002 −0.001 −0.009 0.002 −0.001 −0.020 0.001 −0.002 −0.006 
(0.3, 0.9) 0.6 −0.001 −0.001 −0.002 −0.001 −0.002 −0.012 0.001 −0.001 −0.011 

Fig. 2. Time series trace plots for β3 from the stimulations. The parameters for this simulation were set at n = 4000, (c1, c2) = (0.2, 0.4), β0 = 
log(0.1), β1 = log(1.5), β2 = log(2.5), and β3 = log(1.5). 

to analyze the 500 simulated data sets for each set of parameter combination. Iteration series trace showed that a burn-in 
period of 500 interactions was sufficient (Fig. 2). The procedures were implemented in R software programs (R Core Team, 
2016) on the Shared Hierarchical Academic Research Computing Network in Canada (Compute Canada, 2016). 

We first assessed the finite sample performance of the model in estimating the true values of the risk window (c1, c2) and 
the regression coefficient β3 in terms of empirical bias and coverage probability. We further studied the statistical power of 
the proposed test in detecting a non-zero coefficient β3. 

Table 1 presents the empirical bias for ĉ1, ĉ2 and β̂3 under different simulated scenarios. The empirical bias is defined as 
the average difference between the estimates and the true value. In all the settings that we considered, the absolute bias 
values for both c1 and c2 are less than 0.008, with most of the bias values being ±0.001 or ±0.002. The empirical bias for 
regression coefficient β3 is also very small, regardless the value of sample size n = 2000 or 4000 and the true parameter 
value of β3 = log(1.5), log(2.5), or log(3.5). The excellent finite sample performance is due to the fact that there is a 
non-zero main effects for the risk window I(c1, c2). When the risk window main effects have the same cut points as the 
interaction term, it provides additional information for estimating the risk window parameters c1 and c2. 

Table 2 shows the empirical coverage probabilities (C.P. in percentage) of the 95% credible intervals for ĉ1, ĉ2 and β̂3. 
The empirical coverage probability (C.P.) is defined as the proportion that the 95% credible interval contains the true value. 
In all the 108 coverage probabilities that we calculated, most of the coverage probabilities were close to 95%, with about 
two-third of them (72 out of 108) around 93% to 96%, and the other one-third around 90% to 92%. This suggests that the 
proposed Bayesian method provides excellent point estimates and the accurate 95% credible intervals, correspondingly. 
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Table 2 
Coverage probabilities (C.P. in percentage) for 95% credible intervals using the Bayesian method. The true values for β0 = log(0.1), β1 = log(1.5) and 
β2 = log(2.5) in all simulations. Results are based on B = 5000 MCMC iterations and R = 500 simulation replications. 

(c1, c2 ) 

n = 2000 

tc β3 = log(1.5) 
ĉ1 ĉ2 β̂3 

β3 = log(2.5) 
ĉ1 ĉ2 β̂3 

β3 = log(3.5) 
ĉ1 ĉ2 β̂3 

(0.1, 0.2) 0.1 95.0 92.6 90.4 91.4 93.0 94.0 92.6 93.0 93.4 
(0.2, 0.4) 0.2 93.6 95.8 92.6 93.0 94.2 91.2 91.6 90.4 94.0 
(0.2, 0.5) 0.3 91.6 93.6 96.2 93.2 93.4 94.2 92.2 93.2 92.2 
(0.3, 0.7) 0.4 93.4 94.0 93.8 92.8 94.6 92.4 92.8 92.4 92.8 
(0.2, 0.7) 0.5 93.6 94.8 92.4 93.4 93.6 93.2 92.0 91.4 92.0 
(0.3, 0.9) 0.6 93.6 94.6 93.0 94.0 92.4 92.0 93.2 92.8 94.8 

n = 4000 

(0.1, 0.2) 0.1 93.8 95.0 93.8 92.4 91.8 93.4 93.4 92.2 92.8 
(0.2, 0.4) 0.2 93.6 93.8 94.0 94.8 92.0 93.2 93.4 93.6 93.0 
(0.2, 0.5) 0.3 94.8 92.4 94.0 93.4 91.4 91.2 90.2 91.8 94.4 
(0.3, 0.7) 0.4 93.2 94.6 95.8 92.0 90.6 92.0 94.0 90.8 93.6 
(0.2, 0.7) 0.5 95.0 91.8 94.4 93.4 94.2 93.6 91.2 92.6 94.6 
(0.3, 0.9) 0.6 94.6 93.8 91.6 94.0 93.0 94.2 94.0 92.2 94.8 

Table 3 
Empirical test size and power (in percentage) of the Bayesian method in testing the null hypothesis H0 : β3 = 0. The true values for β0 = log(0.1), 
β1 = log(1.5) and β2 = log(2.5) in all simulations. Results are based on B = 5000 MCMC iterations and R = 500 simulation replications. 

(c1, c2 ) tc β3 = 0 β3 = log(1.5) β3 = log(2.5) β3 = log(3.5) 

n = 2000 

(0.1, 0.2) 0.1 7.0 20.0 74.6 92.6 
(0.2, 0.4) 0.2 6.8 32.6 87.6 96.4 
(0.2, 0.5) 0.3 4.8 32.6 94.0 98.2 
(0.3, 0.7) 0.4 5.4 37.2 95.4 98.2 
(0.2, 0.7) 0.5 4.0 35.0 93.4 97.4 
(0.3, 0.9) 0.6 5.8 33.4 91.6 98.8 

n = 4000 

(0.1, 0.2) 0.1 7.2 33.4 95.0 98.0 
(0.2, 0.4) 0.2 6.2 55.8 98.4 100.0 
(0.2, 0.5) 0.3 4.8 83.0 98.0 100.0 
(0.3, 0.7) 0.4 5.6 65.0 97.0 99.6 
(0.2, 0.7) 0.5 4.4 62.2 99.0 99.4 
(0.3, 0.9) 0.6 4.4 53.0 99.2 100.0 

Table 3 displays the empirical test size and power for testing the hypothesis H0 : β3 = 0 versus H1 : β3 ̸ 0 with = 
different sample sizes n, various risk windows (c1, c2) and effects β3. At the nominal significant level alpha = 0.05, the 
null hypothesis H0 will be rejected if the 95% credible interval for β3 does not contain 0. The column under β3 = 0 shows 
the empirical test size under H0. We observed that most of the test size values are between 4% and 7%, which suggested 
that the test procedure controls the type I error rate. There is a consistent trend that the power increases as the sample size 
increases across different risk windows. Specifically, when β3 ≥ log(2.5), the power was mostly over 80% for both n = 2000 
and 4000, for all risk windows (c1, c2) that we considered (except the risk window (0.1, 0.2), which has an empirical power 
of 74.6%). However, with a smaller effect of β3 = log(1.5) and narrower risk window (c1, c2) = (0.1, 0.2), the empirical 
powers are low (20.0% and 33.4% for n = 2000 and n = 4000, respectively). Our simulations showed a larger sample size is 
required to have reasonable power for testing H0 : β3 = 0 versus H1 : β3 ≠ 0. 

We also compared the proposed method with two existing methods in terms of the statistical power to detect a risk 
window at the 0.05 significance level, using simulated data with three sets of parameter combinations (Table 4). A sample 
size of n = 2000 was used in the simulated data, with the risk window defined by c0 = (0.2, 0.4). A standard test is to 
assume a single arbitrarily pre-specified risk window (c10, c20) for testing the null hypothesis H0 : β3 = 0. The given risk 
window (c10, c20) may or may not be close to the true risk window (c1, c2), as we usually do not know the true risk window 
values when analyzing data in a real application. The permutation test of Wacholder et al. (2010) assessed the statistical 
significance of a series of potential risk windows without compromising type I error. 

For comparing empirical test size, we studied each method by obtaining the probability of rejecting the null hypothesis 
H0 : β3 = 0 when in fact β3 = 0. We observed acceptable test size for each method (see Table 4, with β3 = 0 for details). In 
terms of empirical power, we consider the scenario with β3 = log(2.5) and log(3.5), in which case a sample size of n = 2000 
provides reasonable statistical power for the null hypothesis H0 : β3 = 0. The proposed Bayesian method showed greater 
power than the standard hypothesis testing in the settings when the risk window was badly mis-specified. For example if 
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Table 4 
Comparison of the statistical power to detect the risk window using the Bayesian method, the 
standard test with pre-specified risk window, and the permutation test in simulation studies, 
with sample size n = 2000. 

β3 Bayesian Method Test with pre-specified risk Permutation 
window 

Power (c1, c2) Power Power 

log(1.0) 6.4 (0.20, 0.40) 7.4 7.2 
(0.20, 0.50) 3.0 
(0.25, 0.35) 4.4 
(0.10, 0.60) 5.0 
(0.60, 0.80) 5.2 

log(2.5) 87.6 (0.20, 0.40) 98.8 66.6 
(0.20, 0.50) 94.4 
(0.25, 0.35) 84.8 
(0.10, 0.60) 76.6 
(0.60, 0.80) 9.4 

log(3.5) 96.4 (0.20, 0.40) 100.0 97.0 
(0.20, 0.50) 100.0 
(0.25, 0.35) 99.0 
(0.10, 0.60) 98.2 
(0.60, 0.80) 12.6 

1. True values for β0 = log(0.1) and β1 = log(1.5), β2 = log(2.5). 
2. True values for c1 = 0.2, c2 = 0.4. 
3. Simulation replications R = 500. 
4. Numbers in brackets in the standard test columns indicate the values of (c1, c2) that we 
arbitrarily specified for the test. 

the true risk window was (0.2, 0.4) while a window of (0.1, 0.6) was used. In general, a correct guess is unlikely when there 
is limited knowledge about the risk window. The permutation tests showed comparable power to the Bayesian method, but 
it provided only a p-value without estimating the magnitude of the effect and cannot be generalized to adjust for additional 
covariates. 

5. Application 

We illustrate our method on the data from the CVT trial to evaluate miscarriage risk from the Bivalent HPV Vaccine. 
Detailed information on the trial was discussed by Herrero et al. (2008). In the CVT trial data, some women might have 
more than one pregnancies. To simplify the analysis, we analyzed the data on first-time pregnancy after vaccination only. 
Additional exclusion criteria followed Wacholder et al. (2010). The date of conception was estimated as two weeks after 
the last menstrual period (LMP). We defined the events of miscarriage as loss of pregnancies that occurred within 20 weeks 
after LMP. Since both the HPV and HAV vaccines were administrated in three doses, the marker factor x2i was calculated 
as the number of days between the date of the last vaccination and the date of conception. Note that we excluded the few 
pregnancies that had conceptions before vaccination. Since the incidence of miscarriage in the control arm was about 10%, 
we assigned β0 a prior distribution of N(log(0.1), 1). 

We analyzed 3309 women (median age at enrollment 23 years old, range 18 to 30) with their first-time pregnancies 
after the enrollment of the trial out of the 4252 pregnancies (which included the second or higher number of pregnancies 
of the same woman). For the 3309 women included in this analysis, 1649 of them received HPV vaccination and 1660 of 
them received HAV vaccination. The time interval between last vaccination date and conception date varies between 0 and 
5.57 years, with median time 1.45 years and interquartile range IQR = 0.56–2.48 years. Results of the analysis are displayed 
in Table 5. Maternal age was included in the model because of its possible influence on miscarriage rate (Belloc et al., 
2008; de la Rochebrochard and Thonneau, 2002). Other factors considered were treatment arms, body mass index (BMI), 
education, income, marital status and smoking status. But these factors were eventually excluded as corresponding credible 
intervals of the coefficients were found to contain the value 0.0, indicating that they were not significantly associated with 
the miscarriage outcomes. We forced the main effects and the interaction terms between the treatment and vaccination risk 
window (marker factor) to be included in the model even though they are not significant. 

The estimated starting and end points of the risk window were 0.62 years (95% credible interval: 0.16–1.14) and 
1.27 years (95% C.I.: 0.54–2.01) from the last vaccination date and the conception date, respectively. The point estimate 
for the odds ratio exp(β3) was 1.06 with a 95% credible interval of (0.38, 2.69). These results do not provide supporting 
evidence for a significant association between the bivalent HPV vaccine and the miscarriage risk, which was consistent with 
previous analysis (Wacholder et al., 2010; VRBPAC, 2009). This confirms the safety of the HPV vaccination regarding the risk 
of miscarriage. 

It is worth noting that this Bayesian analysis cannot completely rule out the possibility of miscarriage risk, as it may be 
underpowered because of the sample size of the study. We conducted numerical simulation with parameters given by those 
estimates from the HPV trial data and found that the empirical power of rejecting H0 : β3 = 0 is only 10.2%. 

http:0.54�2.01
http:0.16�1.14
http:0.56�2.48
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Table 5 
Summary of the parameter estimates and 95% credible intervals using the Bayesian model on 
the Costa Vaccine trial (n = 3433). 

Risk window Parameter c1, c2 Cut points (years) 
Estimates 95% CI Estimates 95% CI 

c1 0.28 (0.09, 0.42) 0.62 (0.16, 1.14) 
c2 0.45 (0.25, 0.65) 1.27 (0.54, 2.01) 

Coefficients Parameter β 

Estimates 95% CI 
exp(β) 

Estimates 95% CI 

β0: Intercept −3.05 (−3.97, −2.12) 0.05 (0.02, 0.12) 
β1: HPV effect 0.08 (−0.15, 0.31) 1.08 (0.86, 1.36) 
β2: Risk window effect −0.40 (−1.13, 0.35) 0.67 (0.32, 1.42) 
β3: Interaction effect 0.06 (−0.98, 0.99) 1.06 (0.38, 2.69) 
β4: Age effect: 0.05 (0.01, 0.09) 1.05 (1.01, 1.09) 

Prior parameters Parameter 
Estimates 95% CI 

q1 2.05 (1.02, 5.40) 
q2 1.60 (1.01, 3.37) 

The risk window estimation was based on the transformed scale in interval (0, 1). The 
estimated window was then transformed back to the original scale in years. Results were 
based on posterior distribution from B = 5000 MCMC iterations. 

6. Discussion 

In this paper, we use a Bayesian hierarchical model to assess the risk window of a potential vaccine-related side effect 
following administration of the bivalent HPV vaccine. The main contribution of this study is to make statistical inference 
simultaneously on both the risk effect and the risk window by using a Bayesian approach and Markov Chain Monte Carlo 
method. It provides an alternative test method that takes the uncertainty of the risk window into account. 

The proposed Bayesian approach estimates the risk window and the corresponding risk from the data. When the true risk 
window is known, the standard test method with pre-specified risk window should be used. However, when the true risk 
window is unknown, the proposed method has outperformed the standard test method using a misspecified risk window. 
Also, prior knowledge can be incorporated into analysis when specifying the prior distributions. The use of hierarchical priors 
in the proposed method allows for more flexibility than fixed priors (Chen et al., 2014; Gelman et al., 2009). The Bayesian 
method provides point estimates for the risk window and the risk effect simultaneously, and provides the corresponding 
credible intervals capturing the uncertainty in these estimations (Goodman, 1993; Rothman, 1998; Walker, 1986). In 
contrast, the permutation procedure used in previous analysis of the HPV trials provided only a p-value. The model may 
become non-identifiable when the lower bound of the risk window is very close to 0 (e.g., c = (0.01, 0.2)), or the upper 
bound is very close to 1 (e.g., c = (0.7, 0.99)), in which case the proposed method may produce unstable results. In these 
situations, we suggest users try the model with a single cut point by specifying c.n = 1 in the ‘‘bhm’’ R package discussed in 
Section 3. 

The proposed Bayes method can be extended to a wide scope of application scenarios. First, the outcome of interest 
can also be a continuous variable such as duration of efficacy measurement, or a time to event (survival) variable such as 
gestational age of fetuses affected. These situations can be handled by the ‘‘bhm’’ R package by using family = ‘Gaussian’ for 
continuous outcome variable and family = ‘Surv’ for survival outcome variable, respectively. For example, when studies have 
demonstrated long-term temporal trends of cancer risk among atomic-bomb survivors (Furukawa et al., 2013), the proposed 
method can be used to identify the actual risk window of age-at-exposure. Another example arises when investigating a 
time-dependent effect, an exposure at time t0 = 0 may affect the risk between time t0 + L (latency) and t0 + R (recency), 
where (L, R) is the risk window. In addition, this model may apply more generally when the effect of an exposure is restricted 
to an uncertain class of individuals, as in many situations in occupational or environmental epidemiology. The restriction 
can be temporal, as we assumed here that the effect was likely restricted to fetuses conceived within an unknown risk 
window defined by days between conception and vaccination. The restriction can also be spatial, for example, when the 
only individuals having elevated risk are those who lived within an unknown distance of a place of exposure, such as a 
pollution source. 

In Bayesian applications, choices of the appropriate prior distributions are usually subjective. The corresponding 
frequentist analysis ignores the component of uncertainty due to standard but unverifiable model assumptions. In general, 
statistical models may be underpowered when the sample size is not large enough for detecting a small effect. However, the 
Bayesian model can be empowering if proper prior knowledge is incorporated in the model. When explicit assumptions 
about priors and hyper-priors are realistic, our approach produces joint point and interval estimates and measures of 
uncertainty on the risk window and the risk. These may lead to better appreciation of etiologic and public health implications 
than existing approaches when an exposure alters the risk of disease only within a particular risk window. 
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