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 Health utilities
'

…affect you 
…are reported alongside underestimates of uncertainty 

We aim to explain: 
- why you should care 
- where the uncertainty comes from 
- what to do about it 



         Health utilities are used to decide which treatments to reimburse
'



   

Cost 

Effectiveness 
QALY = quality-adjusted life year
4
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Why is this topic important in Oncology?
$

•	$ Funding of cancer drugs in Canada depends 
on evaluation of cost-effectiveness (as part 
of Health Technology Assessment) 

•	$ Pan-Canadian Oncology Drug Review 
(pCODR) at the Canadian Agency of Drug 
and Technology in Health (CADTH) 

•	$ CADTH has recently published an updated 
guideline for economic evaluation for HTA in 
Canada (2017) suggesting that the base 
case should be a probabilistic analysis (not 
deterministic) 

5 



      

      
  

 

   
   

Why is this topic important in Oncology?
$

•	$ The main outcome of a cost-effectiveness 
analysis is called incremental cost-
effectiveness ratio (ICER) 

DCICER =
 
DE 

•	$ Incremental Cost = DC 
•	$ Incremental Effectiveness = DE 

6 



      

  
      

 
  

  

Why is this topic important in Oncology?
$

DC E(DC)E ICER (	 ) = E( ) ¹ 
DE E(DE) 

•	$ Therefore, probabilistic analysis is essential 
to fully account for the joint distributions of 
all the parameters in the model to estimate 
an unbiased ICER and its distribution 
(degree of uncertainty) 

7 



      

  

      
   
  

 
 

Why is this topic important in Oncology?
$

DCICER = 
DE 

•	$ In Oncology cost-effectiveness analysis, 

DE = DQALY = D(utility ́  survival )
 
•	$ Hence, the importance of capturing the 

uncertainty of utility adequately 
•	$ Otherwise, drug funding decision may be 

based on invalid estimate of the distribution 
of ICER 

8 



   

 
    

   

Why does uncertainty matter?
$

• Reimbursement decision making 
– Evidence based 
– Estimates of incremental cost and utility (ICERs, etc.) 
– Quality of estimates matters 

• ICER of $40,000 per QALY with 95% CI ($5,000 to $300,000) 
• ICER of $40,000 per QALY with 95% CI ($35,000 to $50,000) 



  Health Utility and QALYs
'

10 



 

 

  

Direct Measures
'

(a) Time Trade-Off 
(TTO) 

(b) Standard Gamble 
(SG) 

11 



 

    

MAUI – Example EQ-5D
%

Figure 1. EQ-5D example from 
http://diabetesclinicevaluation.weebly.com/uploads/9/5/6/7/9567609/6029985.jpg?633 12 

http://diabetesclinicevaluation.weebly.com/uploads/9/5/6/7/9567609/6029985.jpg?633


Direct 
Measures 

• Time 
Trade-off 

• Standard 
Gamble 

Indirect 
Measures 

• Multi-
Attribute 
Utility Index
(MAUI) 
• EQ-5D 
• SF-6D 
• HUI3 

MAUI Valuation Study 

  

 

 

  

 

 
 

 
 

  

 
  

Measuring Health Utilities
*

Mapping
Algorithms 

• Many 
• Developed 

using 
health-
related 
quality of
life 
measures 
(HRQOL) 

Country-specific functional
*
form of scoring algorithm 13 



  
  

     

       

       

       

            

           

          

US EQ-5D scoring algorithm
#
(established valuation study)
#

For subject i valuing state j:
'

E(TTO ) = µ  =  1- disutility
'
ij j j 

disutility 
j 
= X

j
b 

2 2
X = (MO2 ,  MO3 ,  SC2 ,  SC3 ,  UA2 ,  UA3 ,  PD2 ,  PD3 , AD2 , AD3 , D1, I2 ,  I3 ,  I3 ), 
 '

j j j j j j j j j j j j j j j 

MO2 
j 
= 1 if state j has mobility at level 2, 0  o/w 

MO3 
j
= 1 if state j has mobility at level 3, 0 o/w 

D1 = # of movements away from full health beyond the first, 

I2 = # of dimensions at level 2 beyond the first,
'

I3 = # of dimensions at level 3 beyond the first.
'

14 



   US EQ-5D-3L: Health state (1,2,3,2,1)
#

x2 

Utility(1,2,3,2,1)=1-(0.175+0.374+0.173-2*0.140+0.011) 
=0.547 15 



  
       

    
     

      
  
  

What’s the issue?
'

• Scoring algorithms yield predictions of population mean utility
'

• Predictions are subject to uncertainty 
• MAUIs elicit utilities subject to uncertainty 
• What impact on uncertainty of estimates of 

– Population mean utility 
– Incremental mean utility? 



 
   

       

Predictions
.

• Regression modelling 
• Uncertainty in line itself 
• Points do not lie perfectly on the line
.

E(TTO ) = µ  =  1- bXij j j 



   
 
     

    
        

  
     
     
    

 

EQ-5D-3L US valuation study 
• 3773 respondents 
• Each valued 10 health states using TTO 
• 42 health states valued in total 
• Modelled mean utility for each health state as a function of

health state attributes 
• Predicted mean utilities for all 243 health states 
• Observed MSE vs theoretical MSE assuming no model mis-fit
(
• Bayesian analysis to yield predictive distribution for each 

mean utility 



  

     

Quantifying prediction precision
*

• Compute out-of-sample prediction errors 
• Omit health state j from analysis and compute expected 

value of observed minus predicted mean 

2 21 X + b + e with b ~ ( ,  ),  N 0 s ,Y = - b N 0 s e  ~ ( ,  )ij j i ij i b ij e 

E(Yj -1+ Xjb̂ (  j)  )2 

2 2= E(Y -µ ) + E(X b - X b̂ ) + 2cov(X b̂ ,Y )j  j  j  j ( j)  j ( j)  j  

= var(Y ) + X var( b̂ )X ¢+ 2cov(X b̂ ,Y )j  j  ( j)  j  j ( j)  j  



     

 

    
 
 

   

    

We see larger MSEs than we should
#

2E(Yj -1+ Xjb̂ (  j)  ) 
2 2= E(Y -µ ) + E(X b - X b̂ ) + 2cov(X b̂ ,Y )j  j  j  j ( j)  j ( j)  j  

= var(Y ) + X var( b̂ )X ¢+ 2cov(X b̂ ,Y )j  j  ( j)  j  j ( j)  j  

Source Contribution Cumulative 
sum 

Sampling variance in observed means 0.00018 0.00018 
Uncertainty in estimated regression coefficients 0.00011 0.00029 
Covariance between observed & fitted mean -0.0000006 0.00029 
Observed MSE on cross-validation 0.00178 

Uncertainty due to model mis-specification 0.00178-
0.00029 

0.00149 



  

   

     

    
   

   
   

    

Regression Model with model mis-fit 

1 X + d d  ~ N(0, s2 )µ =  - b ,j j j j d 

Y = µ  +  b + e with b ~ N(0, s2 ), e ~ N(0, s2 ), ij j i ij i b ij e 

Can think of d as 
• model mis-fit term with a Gaussian prior 
• or can conceptualise as a random effect 
Vague priors for d, b, s 
Get predictive distribution of µj 



  

      
     

How much uncertainty? 

Black dots – predicted means Black lines – 95% CI ignoring model mis-fit 
x’s – observed means Grey lines – 95% CI accounting for model mis-fit 



  

      
    
     

    

How much uncertainty?
$

Health states not included in valuation study 
• Mean 95% CI width: 0.152 
• Range in 95% CI width: 0.142-0.169 

Minimum important difference for the EQ-5D-3L
$

• 0.03 to 0.08 



  
   

     
  
    

          
     

Does it matter?
%

• Level of uncertainty may be important 
• MAUIs used in HTA to calculate 

– Population mean utility 
– Incremental QALYs (difference in QALYs between groups) 

• Use simulation to estimate impact of uncertainty in the scoring 
system on uncertainty in (incremental) mean utilities. 



  
     

     
     

  
    

   
       

Population mean utility
*

• Each respondent fills out the EQ-5D-3L 
• Scoring algorithm -> utility for each respondent 
• Target of inference: population mean utility 
• Sources of uncertainty 

– Sampling variation in health states 
– Uncertainty in scoring algorithm 

• Sample of 500 adults from the US general population
*

• Take random subsamples of varying sizes 





 

   
           

  
   

   

Incremental mean utility 

• Simulate data from an RCT 
– Simulate health state distributions 
– Simulate health states for each person in each arm of the trial 
– Scoring algorithm -> utilities 
– Mean utility per arm 
– Difference -> incremental mean utility 





         
algorithm
$
For an arbitrarily large study, accounting for uncertainty in the scoring 



  

    
   

 
   

     
       

         

Findings so far…
'

• Uncertainty in scoring algorithm is substantial 
• Should be accounted for 

– Bayesian methods 
– Multiple imputation (Dr Kelvin Chan) 

• Problem not unique to the EQ-5D 
– E.g. SF-6D utilities estimated subject to std error of 0.06 

• Current practice gives decision makers a false level of certainty.
'



What is the problem?

31

• Health utilities in the value sets of MAUI are subject to 
uncertainty
• E.g. 95% CI prediction error

• ± 0.0754 for EQ-5D
• ± 0.1655 for SF-6D1

• Minimal clinically important differences
• 0.05 – 0.08 for EQ-5D2

• 0.01 – 0.09 for SF-6D3

1Kharroubi S, O'Hagan A, Brazier JE. Estimating utilities from individual health preference data: A nonparametric bayesian method. Applied 
Statistics. 2005;54(5):879-895.
2Le QA, Doctor JN, Zoellner LA, Feeny NC. Minimal clinically important differences for the EQ-5D and QWB-SA in post-traumatic stress 
disorder (PTSD): Results from a doubly randomized preference trial (DRPT). Health Qual Life Outcomes. 2013;11:59-7525-11-59.
3Walters SJ, Brazier JE. Comparison of the minimally important difference for two health state utility measures: EQ-5D and SF-6D. Qual Life 
Res. 2005;14(6):1523-1532.



What is the problem?

4Pullenayegum EM, Chan KKW, Feng X. EQ-5D health utilities are estimated subject to considerable uncertainty. MDM 2015.

Traditionally, utilities from MAUI were 
treated as known with certainty (rather 
than estimated with uncertainty)

Ignore 

µ
j
=1− Xjβ +δ j

jd bµ jXj
-=1ˆ



What is the problem?

33

• No method to account for variance of the 
estimated predicted mean health state 
utilities from MAUI
• E.g. subjects with the same health states 

will always “map” to the same health 
utility without variation

• Cost-utility analyses based on MAUI do not 
capture parameter uncertainty in quality-
adjusted life years



Solutions

34

1. Full Bayesian analysis 
• Using posterior predictive distributions of 

health states using original study data1

1Pullenayegum EM, Chan KKW, Feng X. EQ-5D health utilities are estimated subject to considerable uncertainty. MDM 2015.

Need to specify a likelihood for the data, and 
acknowledge the possibility of model 
misspecification:

µ
j
=1− Xjβ +δ j

If no misspecification δj= 0 for all j



Utility 

Posterior 
Likelihood 
Prior  

Bayesian Analysis 



Bayesian Analysis

1Pullenayegum EM, Chan KKW, Feng X. EQ-5D health utilities are estimated subject to considerable uncertainty. MDM 2015.

•Challenges: 
•Requires implementation by the 
original authors
•Lack of raw data from valuation studies



Multiple Imputation

37

• Three phases:

1. Missing data are filled in m times to 
generate m complete data sets

2. The m complete data sets are analyzed 
by using standard procedures

3. The results from the m complete data 
sets are combined for the inference



A B C
1 3
4 5

Incomplete 
data 

Set 1
A B C
1 2 3
4 5 6

Set 2
A B C
1 7 3
4 5 8

Set 3
A B C
1 9 3
4 5 2

Imputed data 

Results
set 1

Results 
set 2

Results 
set 3 

Combined 
results of 
sets 1 - 3 
(Rubin’s 

rule)

Separate analysis Pooled result

Multiple Imputation 



Solutions
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Multiple imputation
• Approximation to Bayesian treatment of 

parameter uncertainty, used to handle 
missing data2,3

• E.g. true mean utilities of each health state

• Replaces missing value with a set of 
plausible values that represent the 
uncertainty about the right value to impute

2Rubin DB. Multiple imputation for non-response in surveys. John Wiley & Sons; 1987.
3Schafer JL. Multiple imputation: A primer. Stat Methods Med Res. 1999;8(1):3-15.



EQ-5D-3L Health States (HS)

1,1,1,1,1 1
1,1,1,1,2 2
1,1,1,1,3 3

3,3,3,3,1 241
3,3,3,3,2 242
3,3,3,3,3 243



. . . ... 

Health 
State

Utility

2 X2.2

3 X2.3

4 X2.4

243 X2.243

100 points randomly selected from each health state to generate 100 imputed datasets 

. . . .. ........... 

Posterior distributions for 243 health states 

health state 3 (1,1,1,1,3) health state 4 (1,1,1,2,1) health state 243 (3,3,3,3,3) 

1st IMPUTATION
health state 2 (1,1,1,1,2) 

X1.2

Imputed dataset 1

X1.3

X1.4

X1.243

2nd IMPUTATION

X2.2

X2.3

X2.4

X2.243

Imputed dataset 2

3rd IMPUTATION

X3.2 X3.3
X3.4

X3.243

Imputed dataset 3

100th IMPUTATION

X100.2

X100.3

X100.4 X100.243

Imputed dataset 100
Health 
State

Utility

2 X1.2

3 X1.3

4 X1.4

243 X1.243

Health 
State

Utility

2 X3.2

3 X3.3

4 X3.4

243 X3.243

Health 
State

Utility

2 X100.2

3 X100.3

4 X100.4

243 X100.243



Subject Health 
state

Utility 

1 3 X1.3

2 11 X1.11

3 125 X1.125

4 200 X1.200

5 243 X1.243

Set 1 
Mean 

utility & 
variance 

Total mean utility and variance
(Rubin’s Rule)

Subject 1 2 3 4 5
Health state 3 11 125 200 243

Subject Health 
state

Utility 

1 3 X2.3

2 11 X2.11

3 125 X2.125

4 200 X2.200

5 243 X2.243

Subject Health 
state

Utility 

1 3 X3.3

2 11 X3.11

3 125 X3.125

4 200 X3.200

5 243 X3.243

Subject Health 
state

Utility 

1 3 X100.3

2 11 X100.11

3 125 X100.125

4 200 X100.200

5 243 X100.243...........

A sample of 
5 subjects 

Generate 
100 imputed 

datasets

Separate 
analysis 

Pooled result

Set 2
Mean 

utility & 
variance 

Set 3
Mean 

utility & 
variance 

Set 100
Mean 

utility & 
variance 

Set 1 Set 2 Set 3 Set 100



Validation (Aim)

43

• Using the US EQ-5D-3L valuation study,

• Demonstrate that multiple imputation can 
correct underestimation of variance of mean 
health utilities



Methods: Full Bayesian Analysis

44

• Derivation set: N = 3,773 (US EQ-5D-3L)
• Application set: N =3,958 (CWF dataset)
• Derivation set used D1 model, which was fitted to 

Bayesian mixed effect model
• Obtained posterior predictive distribution of the 

mean utility attached to each health state
• Applied to application set to compute mean and 

variance



Approach

45

1. Fit a full Bayesian model

: health utility of the jth health state
: linear predictor of the MAUI of the jth health state
: deviation of predicted health utility from the true utility

µ
j
=1− Xjβ +δ j

2. Use the joint predictive distribution to implement multiple 
imputation

j
µ
bjX

jd
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• Simulated US EQ-5D data to examine the 95% CI coverage of 
health utilities from multiple imputation

Using Covariance 
Matrix of US D1 
Regression Model

Random sampling of 
joint predictive 
distributions (MI)

Number of Health States 
that have coverage 
>95%

2 out of 42 38 out of 42

Percentage of coverage 40% 98%



47

Methods to illustrate that multiple imputation can be used to correct for 
the underestimation of variance of mean health utilities of the sample.

US EQ-5D-3L 
valuation 

study
(n=3773)

Bayesian Mixed 
Effects (D1) 

Model

Commonwealth 
Fund Survey

(n= 3958)

Mean and 
Variance by 

Multiple 
Imputation 

Mean and Variance 
by Posterior 
Predictive 

Distributions

Mean and 
Variance by 
Coefficients

Posterior 
Predictive 

Distributions 
of Health state 

Utilities

Multiple 
Imputation

Coefficients 
of D1 Model

Monte Carlo
Markov 
Chain

(Rubin’s 
Rule)

Application Set:Derivation Set:



Results

48

Comparisons of the sample mean and sample standard error of the 

mean health utility of the application set (N =3958) based on (i) the 

regression coefficients (i.e. scoring algorithm), (ii) the full Bayesian 

model’s posterior predictive distribution and multiple imputation

Traditional Method

(based on coefficients)

Multiple 

Imputation
Full Bayesian Model

Mean 0.827 0.828 0.827

Variance 7.96 × 10-6 1.28 × 10-4 1.27 × 10-4

SE 2.82 × 10-3 1.13 × 10-2 1.12 × 10-2



Results

49

95% of confidence intervals (CI)/credible regions (CR) of sample mean 
utility of the application set



Discussion

50

• Multiple imputation provides “middle ground”
• Researchers do not have to learn Bayesian 

methods
• Variance and standard error reflect appropriate 

degree of parameter uncertainty
• Applicable to a wide variety of analyses (e.g. 

regressions) where traditional MI is applicable.



Limitations

51

• Need original publishers of MAUI studies to create 
the imputed datasets to make it publicly available to 
apply this imputation method



Conclusions

52

MI is a potential method to account for the 
underestimation of variance of predicted 
health utilities



Current work

• Improving precision based on existing data
– Use posterior distribution of d
– Model correlation among d

• Improving precision based on better designs
– How many health states to value?
– Quantify MSE as a function health state selection & SS

53
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Multiple Imputation

56

MCMC method:

The imputation I-step: draw values of Yi(mis) 
from a conditional distribution of Yi(mis) 
given Yi(obs)

The posterior P-step: simulates the 
posterior population mean vector and 
covariance matrix from the complete 
sample estimates



Multiple Imputation

57

• Three phases:

1. Missing data are filled in m times to 
generate m complete data sets

2. The m complete data sets are analyzed 
by using standard procedures

3. The results from the m complete data 
sets are combined for the inference



Multiple Imputation

58

And B be the between-imputation variance



Multiple Imputation

59

The total variance is: 

B
m

UT )11( ++=



Multiple imputation

60

• Multiple imputation with Monte Carlo Markov chain 
models
• Performed using derivation set
• Randomly drawn multiple imputed sets applied to 

application dataset

• Mean, variance and standard error across imputed 
sets calculated using Rubin’s rule10

10Rubin DB. Multiple imputation for non-response in surveys. John Wiley & Sons; 1987.



Bayesian mixed effect model

61

• Take posterior predictive joint distributions of 
the mean utility to 
• Capture parameter uncertainty
• Perform multiple imputations (imputed 

sets drawn randomly from the Gibbs 
sampler)
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