
DRP for Drug Repurposing
Example: Ibrutinib is a small molecule that targets the BTK 
protein and is FDA-approved for Chronic lymphocytic 
leukemia and a few subtypes of lymphoma. MMDRP 
accurately predicts the sensitivity of breast cancer cell lines 
to ibrutinib, e.g., in the EFM192A breast cancer cell line. We 
interpreted our model using the Integrated Gradients method 
and identified DERL1 and FAM91A1 to be involved in the cell 
line’s response to ibrutinib, both of which have been identified 
as potential targets in breast cancer. The expressions of 
DERL1 and FAM91A1 show higher correlations with AAC in 
breast cancer cell lines and may serve as predictive 
biomarkers:

Overcoming Data Limitations in Drug 
Response Prediction
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Deciphering Therapy Response in 
Cancer Variability
Cancer treatments often face the challenge of patient-specific 
responses due to genetic diversity. Advancements in 'omics' 
technologies have paved the way for precision oncology, 
aiming to tailor treatments to individual patient profiles. 
Traditional pharmacogenomic studies have helped to 
understand drug sensitivity but are limited by data scarcity, 
inconsistent coverage across cell lines, and outdated 
analysis methods. Our project introduces a Multi-Modal Drug 
Response Predictor (MMDRP), a sophisticated Python-based 
tool that utilizes deep learning to predict drug efficacy on 
cancer cell lines while using multiple omic data types. 
MMDRP incorporates novel features like:
Weight Adjustment: Prioritizing rare samples to avoid 
overfitting.
Multi-Modal Framework with Data Fusion: Simultaneous 
integration of various 'omic data for better predictions.
Graph Neural Networks: Advanced representation of 
molecular structures.
Cross-validation assessment and model interpretation 
demonstrates MMDRP's superior performance over 
traditional models, highlighting its potential in drug response 
prediction, drug repurposing, biomarker discovery and drug 
design.

The code for this project is available at: 
https://github.com/LincolnSteinLab/MMDRP

Multifaceted Performance Assessment
Assessed model performance across Drug efficacies (AACs 0 
to 1), Drug types (Targeted vs Untargeted), Model 
configurations (Baseline vs Refined), Data Splitting 
Strategies (Split by Cell Line, Split by Drug Scaffold, or Both)
• Sample weighting via Label Distribution Smoothing (LDS), 

drug representation via graph neural networks (GNNs), and 
data integration via low-rank multi-modal fusion (LMF) all 
result in better predictive models.

• Predicting the effects of targeted drugs, as well as more 
efficacious drugs with higher AAC remains a challenge.

• MMDRP generalizes best to novel drugs than to novel cells.
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Data Scarcity & 
Incompleteness: A large 
proportion of cell line data 
does not have associated 

drug response data

Data Skewness: The imbalance in 
the representation of effective vs non-
effective drugs risks biasing models

MMDRP:
Drug Response Prediction and Biomarker Discovery Using Multi-Modal Deep Learning
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Summary
MMDRP can help improve pre-clinical pass rates, 
drug repurposing and biomarker discovery. The key 
findings of this work are summarized as follows:

• Current DRP datasets lack diversity, impacting 
predictions for underrepresented drugs, drug 
efficacies and cancer types.

• Other profiling data types, beyond gene 
expression, contribute significantly to drug 
response prediction 

• LDS, LMF, and GNN better use existing omic and 
drug sensitivity data for tasks with downstream 
impact in precision oncology.

• The interpretation of multi-modal models can help 
identify novel composite biomarkers.

Future work should emphasize on prediction 
performance in higher AAC and targeted drugs, in 
addition to the deconvolution of the effects of clonal 
heterogeneity on drug response.

Modular Multi-Modal Neural Network for 
Enhanced DRP
Autoencoders: Independent Learning from omic data types
AttentiveFP GNN: Better drug representation
Low-Rank Multi-Modal Fusion (LMF): better integration of 
omic data
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Pharmacogenomic Experiments Pave the 
Way for Precision Oncology
Drug sensitivity data coupled with cell line profiling data allow 
for better statistical modelling of cancer cells’ response to drugs.
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Interpretation of MMDRP’s 
GNN module highlights 
atoms and bonds predictive 
of ibrutinib’s efficacy, and 
correctly identifies the 
acryloyl functional group 
that is responsible for 
binding BTK. Ibrutinib

DRP employs chemical 
space exploration, 
multi-omic profiling, 

and cellular response 
measurement

Using two omic data types 
always results in better 

performance compared to 
a single omic data type

https://github.com/LincolnSteinLab/MMDRP

