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Aim 1. Create a deep learning model 
using somatic mutation profiles from tumor 
tissue WGS (tWGS; 3).
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• A tumour's cell of origin is the single major predictor of the natural history 
of the disease (1). 

• However, identifying the tumour's cell of origin can be complex, time-
consuming, and error-prone in current clinical settings.

• Somatic passenger mutations capture the epigenetic state of the cell of 
origin as different cell types have distinctive chromatin profiles (2).

• Tumour cells release circulating tumour DNA into the blood, containing 
somatic passenger mutations specific to the tumour's cell of origin.

• Objective: To design a deep learning system to predict cancer 
origins utilizing passenger mutation profiles detected from 
circulating tumour DNA collected by plasma whole-genome 
sequence (pWGS) to aid cancer of unknown primary and early 
cancer identification.

Introduction Methods
Aim 2. Adapt the model to pWGS somatic 
mutation profiles.

Results

Aim 1. Create a deep learning model using somatic mutation profiles from tWGS: 
• We created a feed-forward neural network that predicted 28 common cancer types, 

with an overall held-out accuracy of 87.6%.
• Top N-rank analysis indicates that the model could be valuable for differential 

diagnosis.

Aim 2. Adapt the model to pWGS somatic mutation profiles:
• The overall accuracy exceeded 78% when using more than 25% of the tWGS 

mutation profile of a patient.

Overall Accuracy: 87.6%

Conclusion
Our study presents the development of a feed-forward neural network trained with tWGS, capable of 
predicting 28 common cancer types with an overall accuracy of 87.6%. When training models with 
simulated pWGS somatic variant profiles by randomly sub-sampling a proportion of tWGS mutation 
profiles for each sample, the overall accuracy consistently surpassed 78% when using more than 
25% of the mutation profiles. In the validation phase using real PDAC samples as the test data, the 
model achieved 96% accuracy with tWGS data, and the removal of non-tumour variants significantly 
improved accuracy in making prediction for pWGS data from the same samples. Our ensemble 
models, which combined the tWGS-trained model with models trained on simulated pWGS mutation 
profiles (and repeats), consistently exhibited accuracies above 80% for predicting PDAC tumour 
samples, except for the model trained with 10% of sub-sampling. Interestingly, using pWGS samples 
that excluded variants not matching those found in tWGS, as the test data, the highest classification 
accuracy was 76% with the model trained with 25% of each patient’s tWGS mutation profile.
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• To validate the model in aim 1, classification accuracy in predicting PDAC (n = 178; 7) 
with tWGS was 96%. When using pWGS data from the same samples, filtered 
variants matched those found in tWGS (filtered pWGS), as the test data, we observed 
accuracies of 80-100% for samples with TRD ≥ 0.05. This indicates that the 
algorithm's performance is greatly improved when non-tumour variant calls are 
removed.

• Testing PDAC samples on our ensemble models showed that accuracies for tumour 
sample prediction were consistently above 80%, except for the model trained with 
10% sub-sampling. For filtered pWGS samples, the highest classification accuracy 
was 76% with the model trained using 25% of each patient’s tWGS mutation profile.
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• Estimate and remove non-tumour variant 
noise by subtracting variant profiles from a 
panel of normal controls (8). 

• Use Bidirectional Encoder Representation 
Transformers to accommodate the 
sparseness of pWGS (9).

n = 8,277
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