The International Cancer Genome Consortium brings more genomic health data to researchers on the Amazon Web Services Cloud

Toronto – (November 18, 2015) The International Cancer Genome Consortium (ICGC) announced today that 1,200 encrypted cancer whole genome sequences are now securely available on the Amazon Web Services (AWS) Cloud for access by cancer researchers worldwide.

The Ontario Institute for Cancer Research (OICR), which houses the ICGC’s Data Coordination Center (DCC), copied ICGC genome data onto the AWS Cloud and is providing authorized researchers with credentials to access and analyze the data using secure mechanisms. The ICGC Data Access Compliance Office has established a framework that protects the confidentiality of research participants while working to ensure that the research will benefit future cancer patients.

The newly launched initiative means one of the world’s largest collections of cancer genome data is now more easily accessible to qualified researchers, which will enhance collaboration and potentially accelerate the development of new treatments for cancer patients.

Cloud solutions have become essential to genomics research because of the vast amount of data produced by researchers and the difficulties inherent in transferring such large datasets between sites. Projects can quickly grow to several petabytes in size, with each petabyte being the equivalent of data on 223,000 DVDs. Very few institutions around the world have the capacity to download such immense datasets for analysis, and this has limited the number of researchers who can access genome projects and the scope of what can be done with the data.

With cloud computing, researchers don’t need to download data. They can work with data and run experiments in the cloud, a flexible network of servers on the Internet, and access data in minutes rather than months. Data stored in the cloud has been shown to be as secure, if not more so, than data downloaded to local servers and hard drives. The set of 1,200 genomes now available on AWS is the first installment of ICGC data to be posted and is expected to grow several fold over the next 12 months with the addition of data from more cancer patients.

“This initiative brings together one of the world’s largest cancer genome datasets and one of the world’s leading cloud computing providers to create a powerful new resource for cancer researchers,” said Dr. Lincoln Stein, Director of the Informatics and Biocomputing Program at the Ontario Institute for Cancer Research and Director of the ICGC’s Data Coordination Center. “Now, far more researchers will have access to ICGC data, opening up the possibility of new discoveries and new breakthroughs in cancer research.”

The Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the ICGC and The Cancer Genome Atlas (TCGA) is coordinating analysis of more than 2,800 cancer genomes, and is making extensive use of AWS and the genomes stored on Amazon Simple Storage Service (Amazon S3). Each genome is being characterized through a suite of standardized algorithms, including alignment to the reference genome, uniform quality assessment, and the calling of multiple classes of somatic mutations. Scientists participating in the research projects of PCAWG are addressing a series of fundamental questions about cancer biology and evolution based on these data.

“Making this data available and usable will enable more researchers across the world to ask questions and get answers that were previously out of reach,” said Matt Wood, General Manager of Product Strategy at Amazon Web Services, Inc. “Researchers can now explore these large and diverse datasets in unconstrained ways, without having to manage large amounts of physical infrastructure. Instead, they can focus on driving their state-of-the-art research forward.”

“Cancer research is becoming increasingly data-heavy. Compiling the data, organizing the data, analyzing the data, making the data available to all researchers—these are fundamental to making further progress in cancer genome research, and we are excited at the possibilities of working with innovative cloud-based computing systems to achieve these advances,” said Peter Campbell, Head of Cancer Genetics and Genomics at the Wellcome Trust Sanger Institute, who is helping to lead the PCAWG project.

“In the next year, it is estimated that 14 million people worldwide will learn that they have cancer. In order to accelerate our understanding of this disease and ultimately provide better treatment, it is critical that we develop solutions able to meet the scale of this challenge. Co-localizing ICGC data as well as other cancer genomics data sets like The Cancer Genome Atlas with secure and scalable computation resources represents a major step forward for both researchers and patients. With ICGC data available on AWS, we utilized the Seven Bridges platform to perform variant calling on hundreds of genomes weeks faster than would have been possible using local infrastructure,” said Deniz Kural, CEO of Seven Bridges Genomics and Principal Investigator of one of three NCI-funded Cancer Genomics Cloud pilot projects.

“This effort to provide the ICGC datasets on AWS will lower the barriers currently associated with computing on thousands of genomes. Users will have the ability to quickly analyze datasets within the cloud on highly scalable infrastructure. This is a paradigm shift from the old model of slowly downloading data to a user’s local infrastructure before any meaningful work can commence,” said Brian O’Connor, Managing Director of Cloud Computing at the Ontario Institute for Cancer Research.

“The ICGC Data Access Compliance Office (DACO) has been a forerunner in providing controlled, secure, and efficient access to cancer genomic data to members of the research community. It now welcomes the opportunity to further advance research for the benefit of all cancer patients by enabling controlled cloud access to ICGC genomic data stored on AWS. Throughout the process, DACO will implement a robust governance framework to ensure a high degree of privacy protection to patients’ genetic and health data,” said Yann Joly, Data Access Officer, ICGC DACO, McGill University.

“This exciting collaboration and new use for cloud technology is the future of cancer research. Ontario is proud to be part of this initiative through the Ontario Institute for Cancer Research and we look forward to seeing this relationship help cancer patients around the world,” said Reza Moridi, Ontario’s Minister of Research and Innovation.

There are currently 89 ICGC projects underway at research institutes in Asia, Australia, Europe, North America, and South America. These projects seek to identify the genomic drivers of cancer and will help to lay the foundation for developing treatments tailored to patients’ individual needs. The Consortium leads worldwide efforts to map the genomes of both common and rare cancers and has the goal of identifying cancer-causing mutations in more than 25,000 tumours representing more than 50 types of cancer of clinical and societal importance across the globe.

The ICGC develops policies and quality control criteria to help harmonize the work of member projects located in different jurisdictions. Data produced by ICGC projects are made rapidly and freely available to qualified researchers around the world via the cloud and through the ICGC Data Coordination Center at (http://dcc.icgc.org).

For more information and updates about ICGC activities, please visit the website at: www.icgc.org.

International Team Announces Crowdsourcing Competition, Running on Google Cloud Platform, To Understand How Cancers Originate And Evolve

An open challenge that merges the efforts of the world’s largest cancer genome sequencing consortia, the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) with those of Sage Bionetworks and DREAM.

An international consortium of groups from Canada, the United States and the United Kingdom have come together to create an innovative, cloud-based, public challenge to optimize the discovery of genetically distinct groups of cells within cancers that could respond differently to treatment and have different risk of spreading. The ICGC-TCGA DREAM Somatic Mutation Calling Heterogeneity (SMC-Het) Challenge is the first project in the world to marry crowd-sourced benchmarking and cloud-based execution of DNA sequencing analysis pipelines to improve our understanding of tumour DNA. The Challenge launched on November 16, 2015 and will run until May 2016. Sign up to participate at: https://www.synapse.org/SMCHet.

Cancer remains a leading cause of death throughout the world because of its ability to evade even the best available therapies. Recent advances in DNA sequencing enabled patients’ tumours to be analyzed in unprecedented detail. This has revealed that tumour cells do not all share the same DNA– rather some tumour cells have evolved unique genetic characteristics that cause them to respond differently to therapy. This means that effective treatment requires understanding the many different populations of cancer cells present in each patient.

“We know that cancers are made up of many different populations of cells, known as ‘subclones’, and understanding the relationships between these subclones is critical in developing successful long term treatments.” – David Wedge, Staff Scientist at the Wellcome Trust Sanger Institute.

The Challenge tackles three key questions about the sub-clonality of cancer: how many subclones are within any given tumour, how did these subclones grow and evolve, and which genetic mutations are present in each subclones? Using a method to simulate DNA sequencing data that closely mimics data from real human tumours, which was initially developed as part of a previous DREAM challenge, the team has created a set of 50 tumours with distinctive life-histories and evolutions. Contestants will create tools in the cloud using Google Compute Engine that will be run in Galaxy, a widely-used open-source platform for performing biomedical research. Contestants will also use Docker images to setup the environment for their tool to run in, allowing the tools to easily be ported to other systems. Further, the use of Docker images and the tools’ compatibility with Galaxy ensures that all submissions are immediately usable after the Challenge, creating a new library of algorithms that researchers can use in future studies and allowing the results of these studies to be compared in an objective way.

In many scientific challenges, participants are provided the data set to do the analysis on their own systems, and send the results back for evaluation.

“In that model, we lose reproducibility. By requiring contestants to submit their methods in a portable format, the Challenge will have a truly hidden testing set to improve unbiased evaluation” said Kyle Ellrott, researcher with the Knight Cancer Institute at Oregon Health & Science University, and assistant professor at the OHSU School of Medicine Computational Biology Program. “This also means that their results will be immediately available to all members of the scientific community for large scale analysis of different data sets.”

To incentivize a high level of participation, all individuals and teams that submit a final model will be invited as consortium co-authors on an overview paper of the Challenge that will be submitted to Nature Biotechnology, as the official journal partner of the Challenge, and top performers will receive travel awards and speaking invitations at the 2016 DREAM Conference, the 2016 Sage Congress or a similar event. The overall winning algorithms for each sub-challenge will be run on a subset of the ICGC pan-cancer dataset of 2500 whole-genome sequences (subset size will depend on computational characteristics of the winning method).

“Objectively and independently assessing the quality of subclonal reconstruction algorithms is the only way that cancer researchers can make informed decisions about the tools that they use. The Challenge goes beyond informing end users about which tools to use by making available these tools in a trivial to build and run format. Only by collaborating across international borders were we able to bring together the scientific expertise and technical resources needed to make the Challenge happen.” – Amit Deshwar, PhD Candidate with Quaid Morris’s Lab in the Donnelly Centre at the University of Toronto

New study on effect of trees rooted in Ontario Health Study data

Trees provide us with shade and help to clean the air, but new research shows they may also be helping us out in other ways. Using data from the Ontario Health Study (OHS) and City of Toronto forestry records, researchers at the University of Chicago have shown the positive effect that living near trees can have on our health.

Trees! Like the article

The study is the first to use data from the OHS, one of the largest health studies of its kind in Canada, and shows the power of this data for researchers studying how to help prevent chronic disease in our communities.

(more…)

FACIT start-up company Turnstone Biologics secures $11.3 million in financing, boosts leadership

turnstoneTurnstone Biologics Inc., a FACIT-incubated company spun out of research conducted in OICR’s ORBiT Program, has secured $11.3 million in new financing. This investment in the company has allowed it to take another step forward in its development with the hiring of Dr. Sammy J. Farah as Chief Executive Officer and Dr. Brian D. Lichty as Chief Technology Officer (CTO). Farah is a veteran vaccine executive with extensive technology and product development expertise. Lichty, a distinguished scientist, is a leader in the development of oncolytic viral therapies and one of Turnstone’s founding scientists. The financing round was led by Versant Ventures and more than $20 million in follow-on capital has been committed.

“We are very pleased to have concluded this financing with an experienced venture capital firm of Versant’s calibre, and to be able to enhance the Company’s leadership with compelling management,” said Jeff Courtney, Chief Commercial Officer of FACIT, which is Turnstone’s founding investor.

(more…)

FACIT Startup Turnstone Biologics Closes $11M Financing, Secures Additional Capital Commitment, and Adds Strong Management

Versant Ventures-led investment accelerates development, broadens oncolytic viral immunotherapy potential
TORONTO, Oct. 28, 2015 /CNW/ – Turnstone Biologics Inc. (“Turnstone” or the “Company”), a FACIT-incubated startup, has completed its $11.3 million Series A financing round led by Versant Ventures (“Versant”) with follow-on capital committed in excess of $20.0 million. The financing enabled the Company to appoint Sammy J. Farah, PhD, MBA as Chief Executive Officer and Brian D. Lichty, PhD as Chief Technology Officer. Turnstone develops novel oncolytic viral immunotherapies that both attack tumour cells in a targeted manner and enable the patient’s own immune system to be harnessed to fight cancer. The Company previously announced an ongoing landmark Phase I/II clinical trial in patients with advanced or metastatic solid tumours. Proceeds from the financing will enable expansion of operations in Ontario and a broader clinical development strategy.

Bolstering Turnstone’s leadership team with talented and highly qualified management, Dr. Farah is an experienced vaccine executive, while as a founding scientist of the Company Dr. Lichty possesses leading expertise in oncolytic viral therapies. In conjunction with this investment, Versant Partner Jerel Davis, PhD and Managing Director Brad Bolzon, PhD will join the Company’s board of directors. Founding investor FACIT also participated in the round.

“I am delighted to join Turnstone’s dedicated team in helping to advance a transformative technology that will positively impact a broad range of cancer patients,” said Dr. Farah. “With an established leadership in oncolytic viral immunotherapy, and a high content clinical trial for the first product candidate already in progress, Turnstone is in an advantaged position to significantly influence the immuno-oncology landscape.”
Turnstone’s platform is a unique and first-in-class approach that combines the benefits of oncolytic viral therapy with a tumour-targeted vaccine, into a single intravenously-delivered treatment to stimulate and direct a patient’s immune response to tumours. The platform possesses many distinguishing qualities that previous oncolytic virus and vaccine products have lacked, including systemic administration, production of significant durable T-cell responses, and ease of manufacturing. Importantly, preclinical studies in mice and primates have demonstrated unprecedented immune responses against a range of tumours. In expanding the clinical strategy, the Company will advance development in multiple disease indications and in combination with other cancer immunotherapies.

The completed financing underscores the strength and quality of the developmental work completed to date, the opportunities associated with expanding the boundaries of immuno-oncology therapies, and the recent clinical validation of oncolytic viruses. The investment is also another important example building on the translational vision of FACIT to cultivate and promote growth in Ontario’s economy, support improvements in patient care and attract world-class investors to the province’s innovative oncology assets.

“We are very pleased to have concluded this financing with an experienced venture capital firm of Versant’s calibre, and to be able to enhance the Company’s leadership with compelling management,” said Jeff Courtney, Chief Commercial Officer of FACIT and Turnstone’s founding investor. “Versant’s commitment provides valuable development and commercialization resources given the depth of its extensive network and expertise. This investment enables an aggressive growth strategy to be pursued to fully exploit the commercial potential of the Company’s pipeline.”

About FACIT
FACIT is an independent business trust established by the Ontario Institute for Cancer Research to undertake development and commercialization activities related to cancer research, products and drug discovery. For more information, please visit the website at facit.ca or email info@facit.ca.

About Turnstone Biologics
Turnstone Biologics Inc. is a biotechnology company focused on developing novel oncolytic viral immunotherapies for cancer. Turnstone’s therapeutic platform is a first-in-class tumour-targeted oncolytic vaccine that combines potent tumour-killing effects of oncolytic viruses with the benefits of a cancer vaccine that harnesses the patient’s own immune system to fight disease in a sustainable manner. The Company’s platform leverages the innovations and expertise of its renowned founding scientists, Drs. John Bell, Brian Lichty and David Stojdl. Turnstone is also developing additional oncolytic virus strategies and immunotherapy combination treatments. For more information, please visit www.turnstonebio.com or email info@turnstonebio.com.

For further information:
Jeff Courtney, Chief Commercial Officer, jeff.courtney@facit.ca

OICR, UHN, Novera Therapeutics Announce Collaboration with Johnson & Johnson Innovation on Drug Discovery and Development for Haematological Cancers

Research Collaboration and Option and License Agreement Reach Approximately $450 Million Cdn

TORONTO, Oct. 14, 2015 /CNW/ – The Ontario Institute for Cancer Research (“OICR”) together with Novera Therapeutics Inc., (“Novera”) have announced a collaboration with Janssen Biotech, LLC (“Janssen”), a Pharmaceutical company of Johnson & Johnson, to accelerate the development of promising small molecule drug candidates for haematological cancers. Novera, a new Ontario biotechnology company, will discover and develop novel therapeutic compounds identified through OICR’s drug discovery program in partnership with University Health Network’s (“UHN”) enabling technology and disease area biology, and coordinate the collaboration with Janssen under a collaboration, license option, and exclusive license agreement (the “agreement”).

Under the agreement, facilitated by Johnson & Johnson Innovation, Novera will receive an upfront payment and is eligible to receive various pre-clinical, clinical, regulatory and commercialization success-based milestone payments up to a total of approximately $450 million Cdn, plus tiered royalties on potential net sales of products.  Janssen has been granted an exclusive option to license, for all human uses worldwide, candidate drug(s) that have been identified and will be advanced through the collaboration.  Janssen will assume responsibility for subsequent pre-clinical, clinical and commercial development once it exercises its option.

As a translational research institute OICR identifies, funds and supports oncology innovations with a goal of improving clinical practice. Leveraging the extensive and renowned research community within Ontario, OICR assembles and coordinates the intellectual resources, management and expertise needed to drive anti-cancer discoveries from bench to bedside.  Novera was established by FACIT, OICR’s commercialization partner, to advance the therapeutics against molecular targets in difficult-to-treat hematological malignancies.

The announced agreement with Janssen is another important example that builds on the translational mandate and vision of OICR, FACIT and Ontario’s Ministry of Research and Innovation (“MRI”).

“Janssen is an excellent partner for this exciting program and we welcome the opportunity to leverage their distinguished development expertise in haematological cancers.  Patients in Ontario and worldwide will benefit from this collaborative and innovative model for translational research,” said Tom Hudson, President of OICR.

“We are pleased with the remarkable achievements of OICR, UHN and FACIT and their continued efforts to translate breakthrough research from the lab to the marketplace. An expanded presence of a health industry leader like Janssen in Ontario — combined with our world-class scientific research — is essential for the province to stay at the forefront of innovation for the benefit of patients and our economy,” said Reza Moridi, Minister of MRI.

“As a worldwide leader in developing breakthrough medicines, Janssen is an ideal partner and an excellent fit with our plan to bring the commercial strengths and experience of multinational pharmaceutical companies to support oncology innovations arising in the Province,” remarked Jeff Courtney, FACIT’s Chief Commercial Officer. “Janssen’s commitment to this program is indicative of the calibre of innovation driving OICR’s Drug Discovery initiatives.”

About OICR
OICR is an innovative cancer research and development institute dedicated to prevention, early detection, diagnosis and treatment of cancer. The Institute is an independent, not-for-profit corporation, supported by the Government of Ontario. OICR and its funding partners support research programs that involve more than 1,700 investigators, clinician scientists, research staff and trainees in research institutes and in universities across the Province of Ontario as well as at its headquarters. OICR has key research program efforts underway in small molecules, biologics, stem cells, imaging, genomics, informatics and bio-computing. For more information, please visit the website at www.oicr.on.ca.

About FACIT
FACIT (Fight Against Cancer Innovation Trust) is an independent business entity established by the Ontario Institute for Cancer Research (OICR)  to undertake and accelerate development and commercialization activities related to breakthrough cancer research, products and drug discovery from OICR and throughoutOntario. For more information, please visit the website at facit.ca or email info@facit.ca.

About University Health Network
University Health Network consists of Toronto General and Toronto Western Hospitals, Princess Margaret Cancer Centre, and Toronto Rehabilitation Institute. The scope of research and complexity of cases at University Health Network has made it a national and international source for discovery, education and patient care. It has the largest hospital-based research program in Canada, with major research in cardiology, transplantation, neurosciences, oncology, surgical innovation, infectious diseases, genomic medicine and rehabilitation medicine. University Health Network is a research hospital affiliated with the University of Toronto. www.uhn.ca.

About Novera Therapeutics Inc.
Novera Therapeutics Inc. is a biotherapeutics company focused on developing and commercializing therapies that improve patient outcomes in difficult-to-treat cancers. Established by the Fight Against Cancer Innovation Trust (FACIT), Novera’s drug candidates are derived from discoveries, research and innovations originating from the Ontario Institute for Cancer Research (OICR) and Toronto’s University Health Network (UHN). For more information, please email info@facit.ca.

The Ontario Institute for Cancer Research and the Structural Genomics Consortium develop and give away new drug-like molecule to help crowd-source cancer research

Through a novel open source approach the molecule has been made freely available to the cancer research community to help discover new therapeutic strategies for cancer patients sooner.

TORONTO, ON (September 3, 2015) – Researchers from the Ontario Institute for Cancer Research (OICR) and the Structural Genomics Consortium (SGC) at the MaRS Discovery District in Toronto have developed a new drug prototype called OICR-9429 and made it freely available to the research community.  Already research conducted by international groups using OICR-9429 has shown it to be effective in stopping cancer cell growth in breast cancer cell lines and a specific subtype of leukemia cells.

Significant time and resources are required to test new cancer treatments but unfortunately most ideas fail late in the development process and most of the activities are carried out in parallel, without sufficient collaboration. This leads to massive duplication of effort and ultimately increased cost of cancer drugs. By making early stage drug-like compounds such as OICR-9429 available, OICR and the SGC are allowing researchers to more rapidly test new treatment strategies and facilitate sharing of the results. Independent studies from Philadelphia and Vienna have now shown that the cellular target of OICR-9429 may be relevant for drug discovery.

“In the time that it would normally take to negotiate a legal agreement to provide OICR-9429 to other research teams we have received results back from our collaborators showing that it can kill two different types of cancer cells,” says Dr. Cheryl Arrowsmith, Chief Scientist at SGC Toronto. “Opening our chemistry capabilities to the world’s scientists allowed us to crowdsource and accelerate the research.” Dr. Arrowsmith is also a Professor in the Department of Medical Biophysics, Faculty of Medicine at the University of Toronto and a Senior Scientist, Princess Margaret Cancer Centre, University Health Network.

“It is remarkable how quickly our research results were translated into discoveries by the groups around the world.  This demonstrates that Ontario is a new hub of a global drug discovery effort,” says Dr. Rima Al-awar, Director and Senior Principal Investigator, Drug Discovery Program, OICR. “We are looking forward to seeing more research conducted with OICR-9429 and showing that this new approach to early-stage drug discovery has significant advantages.”

OICR-9429 works to inhibit a protein called WDR5 and two recent studies evaluated its effect on breast cancer and leukemia cell lines and returned encouraging results.

A study led by Dr. Shelly Berger at the University of Pennsylvania used OICR-9429 to stop cancer cell growth in a panel of breast cancer cell lines driven by mutated forms of the gene p53. In its normal form p53 is a tumour-suppressor, however once it is mutated it leads to a ‘gain of function’ and causes cancers to grow though its stimulation of WDR5 function. This research is significant as p53 is mutated in at least half of all cancers and is dysregulated in others.

A team headed by Drs. Florian Grebien and Giulio Superti-Furga at the CeMM Research Center for Molecular Medicine in Vienna, Austria used OICR-9429 to demonstrate the potential of WDR5 as a therapeutic target for leukemia. Their research showed that OICR-9429 stopped the growth of leukemia cells with a very specific mutation found in about nine per cent of patients with acute myeloid leukemia.

These two studies culminated in joint publications, in Nature and Nature Chemical Biology respectively, between the international researchers and the Ontario-based OICR and SGC teams.

“I applaud this innovative partnership between OICR and SGC and their collaborative efforts to catalyze cancer research worldwide,” says Reza Moridi, Ontario Minister of Research and Innovation. “Collaboration, both at home in Ontario and abroad, is key to driving scientific discoveries and ultimately delivering better care to cancer patients.”

OICR-9429 is just one in a series of drug-like compounds developed by the SGC that are enabling a new approach to early-stage drug discovery. The SGC and OICR teams are continuing their collaboration to identify additional drug-like molecules to advance cancer drug discovery.

The Centre for Drug Research and Development (CDRD) and the Ontario Institute for Cancer Research (OICR) team up to advance cutting-edge new cancer treatments

Vancouver, BC and Toronto, ON – July 28, 2015: Two of Canada’s leading drug research and commercialization centres have announced a call for proposals to help bring new cancer treatments to patients through collaborative technology-development projects from academic investigators across Canada.

The Centre for Drug Research and Development (CDRD) and the Ontario Institute for Cancer Research (OICR) are providing opportunities for Canadian academic investigators at the cutting edge of cancer research to translate and advance their early-stage technologies and discoveries through pre-clinical development in order to ultimately bring new therapies to patients.

This unique partnership offers unprecedented access to commercialization resources and infrastructure to de-risk and validate new disease-modifying therapies for oncology. The partners are looking to collaborate on projects that will advance the preclinical development of novel therapeutics that focus on innovative targets or therapeutic approaches including small molecules, biologics and cell based therapies.

Unlike traditional grants, CDRD and OICR will work in partnership with academic investigators to develop collaborative project plans addressing the critical steps that are required to advance cancer therapies from the lab towards the clinic and patients who will benefit. Projects will be milestone-driven with clear go/no-go decision points with budgets depending on the scope of the project.

CDRD President and CEO, Karimah Es Sabar commented, “We are very pleased to be partnering with OICR, and to be bringing together resources from across the country to help bring new cancer treatments to the market. By utilizing and leveraging our complementary expertise and infrastructure, we are excited to be accelerating the development of safe and effective treatments for cancer patients.”

Dr. Rima Al-awar, Director of OICR’s Drug Discovery Program said, “Collaboration is essential to bringing innovative research ideas to patients. OICR is proud to partner with the CDRD to help academic investigators move their most promising discoveries to the clinic and to help move cancer research forward.”

The program is open and currently seeking pre-proposals. More information can be found here: www.cdrd.ca/news.

Cancer patients treated in world-first clinical trial of Canadian viral therapy

OTTAWA, July 10, 2015 /CNW/ – Canadian researchers have launched the world’s first clinical trial of a novel investigational therapy that uses a combination of two viruses to attack and kill cancer cells, and stimulate an anti-cancer immune response. Previous research by this team and others worldwide suggests that this approach could be very powerful, and could have fewer side effects than conventional chemotherapy and radiation, although it will take years to rigorously test through this trial and others.

The therapy was jointly discovered and is being developed by Dr. David Stojdl (Children’s Hospital of Eastern Ontario, University of Ottawa), Dr. Brian Lichty (McMaster University) and Dr. John Bell (The Ottawa Hospital, University of Ottawa), and their respective research teams and colleagues. The clinical trial, which is funded by the Ontario Institute for Cancer Research and coordinated by the NCIC Clinical Trials Group, is expected to enroll up to 79 patients at four hospitals across Canada. Up to 24 patients will receive one of the viruses and the rest will receive both, two weeks apart.

Christina Monker, 75, a former nurse from Rockland, Ontario, is one of the first patients treated in the trial. She was diagnosed with cancer in 2012 and, despite six weeks of radiation therapy and two rounds of chemotherapy, the cancer spread to both her lungs. After completing another 30 rounds of chemotherapy, she enrolled in the trial at The Ottawa Hospital and was treated on June 2, 2015.

“The nausea of chemotherapy was worse than I ever could have imagined, but with the viral therapy I just felt like I had the flu for a couple of days, and the symptoms were easily managed,” said Ms. Monker. “It is too soon to know if I may have benefited from this therapy, but I’m very glad to contribute to this important research that could improve care for others.”

The idea of using viruses to treat cancer has been around for more than a century, with sporadic reports of cancer patients experiencing remarkable recoveries after viral infections. However, it is only in recent years that viral therapy has begun to be developed and tested in a rigorous way. Drs. Bell, Lichty and Stojdl began investigating viral therapies for cancer nearly 15 years ago when they worked together at The Ottawa Hospital.

“We found that when normal cells become cancerous, it’s like they are making a deal with the devil,” explained Dr. Bell, a senior scientist at The Ottawa Hospital and professor at the University of Ottawa. “They acquire genetic mutations that allow them to grow very quickly, but these same mutations also make them more susceptible to viruses.”

The two viruses being tested in this clinical trial are called MG1MA3 and AdMA3. MG1MA3 is derived from a virus called Maraba, which was first isolated from Brazilian sandflies, while AdMA3 is derived from a common cold virus called Adenovirus. Both of these viruses have been engineered to stimulate an immune response against cancer cells that express a protein called MAGE-A3, but the Maraba virus also achieves an extra layer of anti-cancer activity by replicating inside many kinds of cancer cells and killing them directly. These viruses are manufactured in specialized facilities at The Ottawa Hospital and McMaster University.

“The idea behind this trial is to use the Adenovirus to prime the patient’s immune system to recognize their cancer, and then use the Maraba virus to directly kill their cancer and further stimulate their immune system to prevent the cancer coming back,” said Dr. Brian Lichty, associate professor at McMaster University. “We’re enthusiastic about the potential of this unique therapy.”

“We’re very excited about this first clinical trial,” said Dr. Stojdl, senior scientist at the Children’s Hospital of Eastern Ontario and associate professor at the University of Ottawa. “We’re continuing to push very hard to develop a suite of biological therapies with the goal of launching similar trials tailored to other types of tumours, including brain cancer and several devastating childhood cancers.”

Viral therapies are one component of a growing field of cancer research that seeks to use biological materials (including cells, genes, antibodies and viruses) to attack cancer cells and stimulate an anti-cancer immune response. This field of research has been called biotherapy or immunotherapy. Dr. Bell and his colleagues recently launched the $60M BioCanRx network to advance this area of research.

The Maraba virus is an important part of a broad biotherapeutics clinical trial development program in Canada that is combining viruses and vaccines with standard and emerging therapies to treat different types of tumours. Drs. Lichty, Bell and Stojdl and their institutions, in cooperation with the Fight Against Cancer Innovation Trust, have formed Turnstone Biologics in order to engage the private sector and to help fund further clinical trials.

“Immunotherapy is a very exciting field of cancer research, with antibody-based therapies showing the most promise in clinical trials so far,” said Dr. Derek Jonker, the overall lead for the clinical trial, a medical oncologist at The Ottawa Hospital and a professor at the University of Ottawa. “Viral therapies have also shown promise in laboratory studies, but it is too soon to know what impact they may have on patients. This clinical trial will help us find out and we’re very grateful to the patients who have participated.”

Ontario is pleased to support innovative research through the Ontario Institute for Cancer Research,” said Reza Moridi, Ontario Minister of Research and Innovation. “Our investments have enabled our researchers to be at the forefront of this new therapy. Immunotherapy has the potential to vastly improve the way cancer is treated, and is another example of how research investment brings tangible benefits to Ontarians and people around the world.”

“The NCIC Clinical Trials Group is very pleased to conduct this trial, which offers a potential new therapeutic approach for cancer patients that has been developed by Canadian researchers,” said Dr. Janet Dancey, director, NCIC Clinical Trials Group and professor at Queen’s University in Kingston.

“Our Government is committed to investing in research that will accelerate efforts to find a cure for cancer, a disease that kills thousands of Canadians each year. The clinical trial announced today represents an innovative approach to treating cancer. We are proud to have contributed to the development of this therapy and wish the researchers and clinicians every success as they carry out this important study,” said the Honourable Rona Ambrose, Canada’s Minister of Health.

In addition to The Ottawa Hospital, the clinical trial is also taking place at the Juravinski Cancer Centre of Hamilton Health Sciences (under the leadership of Dr. Sebastien Hotte), Princess Margaret Cancer Centre of the University Health Network in Toronto (under the leadership of Dr. Albiruni R A Razak) and the Vancouver Centre of the BC Cancer Agency (under the leadership of Dr. Daniel Renouf). The trial was approved by Health Canada, the Ontario Cancer Research Ethics Board and the BC Cancer Agency Research Ethics Board. Further details about the trial are available at clinicaltrials.gov. Patients wishing to participate in the trial should speak with their own oncologist and ask for a referral to one of the participating hospitals. Further details for patients at The Ottawa Hospital are available online.

While this trial is primarily funded by the Government of Ontario through the Ontario Institute for Cancer Research, many other funding organizations have also supported the research of Drs. Bell, Lichty and Stojdl, including The Ottawa Hospital Foundation, CHEO Foundation, Canadian Cancer Society, Terry Fox Research Institute, Canadian Institutes of Health Research, Ontario Ministry of Research and Innovation, Canada Foundation for Innovation, Ottawa Regional Cancer Foundation, Hair Donation Ottawa, Angels of Hope, BioCanRx, Pancreatic Cancer Canada, NAV Canada and several philanthropic donors.

Editors: Pictures of the scientific team members and graphics related to this media release are available for downloading at: http://bit.ly/cancer-viral-therapy

World-leading Big Data researchers call for support for more accessible and more effective storage of data in the cloud to facilitate genomics research

Improved support of cloud infrastructure is essential to the delivery of the next generation of treatments for major diseases like cancer

TORONTO, ON (July 9, 2015) Today in the journal Nature prominent researchers from Canada, Europe and the U.S. have made a powerful call to major funding agencies, asking them to commit to establishing a global genomic data commons in the cloud that could be easily accessed by authorized researchers worldwide.

This would increase access to the data for researchers, reduce the time and cost associated with transferring and storing data on local servers and accelerate genomics research worldwide. Storing data in the cloud has been shown to be as secure, if not more secure, than storing it locally.

With a typical university connection it can take months to download datasets from major international projects like the International Cancer Genome Consortium (ICGC) and the hardware costs associated with storing and processing those data can also prove quite expensive.

With cloud computing a data set from a big genome project can be executed in days, at a fraction of the price.

The authors propose that funding agencies request that major data sets be uploaded into the cloud and that they pay for its long-term storage. Data would then only need to be copied once and researchers would only have to pay for temporary storage while the analysis was in progress. Access would only be provided to authorized researchers.

“Currently a great deal of valuable time and money is spent by researchers transferring data from a repository to their own preferred server, instead of easily and cheaply tapping into a global data commons whenever they need to,” said Dr. Lincoln Stein, Director of the Informatics and Bio-computing Program at the Ontario Institute for Cancer Research, leader of the ICGC’s Data Coordination Center in Toronto and a lead author on the paper. “We encourage a larger investment in the cloud in order to use public funds more effectively and to help accelerate the pace of genomics research.”

“Having authorized access procedures in place ensures respect for the wishes of data donors, including that their data be used safely and securely,” said Dr. Bartha Knoppers, Director of the Centre of Genomics and Policy, McGill University. “Applying the Framework for Responsible Sharing of Genomic and Health-Related Data (www.genomicsandhealth.org) is a first step in enacting the human right of citizens to benefit from scientific advances and of scientists to be recognized for their work.”

“The complexity of cancer biology means that we need huge data sets – basically, the bigger the better,” said Dr. Peter Campbell, Head of Cancer Genomics at the Wellcome Trust Sanger Institute. “We have now reached a stage where these data sets are too large to move around – cloud computing offers us the flexibility to hold the data in one virtual location and unleash the world’s researchers on it all together.”

“The amount of genomic data is growing at an amazing rate. Moving data and analysis tools to the cloud will democratize access to data and to the computational resources required to analyze that data,” said Dr. Gad Getz, Director of the Cancer Genome Computational Analysis Group at the Broad Institute of MIT and Harvard. “The expanded access will accelerate tool development, grow the population of researchers analyzing these rich data sets and ultimately increase the pace of scientific discovery. These cloud-based analysis platforms will also enable the testing of new distributed computing paradigms which expand both the scale of the analyses and the sophistication of the computational algorithms. We are now building a pilot of such a cloud platform.”

“The establishment of novel powerful cloud computing frameworks enabling us to store, share and analyze data across borders will open new perspectives in cancer research,” said Dr. Jan Korbel, group leader at the European Molecular Biology Laboratory (EMBL). “These will take into consideration developments in science and policies for the distribution and sharing of data sets as sensitive as patient genetic data ensuring a safe environment to serve the interests of both sample donors and researchers.”

Cloud computing is most widely associated with consumer products, such as storing music, photos or editing documents in real time. But in fact a great deal of research is already conducted in the cloud, safely and securely. Cloud computing is shared resource, giving researchers access to storage and computing power as needed, instead of making a long term investment in computer infrastructure. This also maximizes the use of the infrastructure as it can be used by many researchers instead of just one.